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ABSTRACT 

Humanlike but not perfectly human agents frequently evoke feelings of eeriness, a phenomenon 

termed the Uncanny Valley (UV). The Categorical Perception Hypothesis proposes that effects 

associated with the UV are due to uncertainty as to whether to categorize agents falling into the 

valley as “human” or “nonhuman”. However, since UV studies have traditionally looked at 

agents of varying human-likeness, it remains unclear whether UV-related effects are due to cate-

gorical uncertainty in general or are specifically evoked by categorizations that require decisions 

regarding an agent’s human-likeness. Here, we used mouse tracking to determine whether agent 

spectra with (i.e., robot-human) and without (i.e., robot-animal and robot-stuffed animal) a hu-

man endpoint cause phenomena related to categorical perception to comparable extents. Specifi-

cally, we compared human and nonhuman agent spectra with respect to existence and location of 

a category boundary (H1-1 and H2-1), as well as the magnitude of cognitive conflict around the 

boundary (H1-2 and H2-2). The results show that human and nonhuman spectra exhibit category 

boundaries (H1-1) at which cognitive conflict is higher than for less ambiguous parts of the spec-

tra (H1-2). However, in human agent spectra cognitive conflict maxima were more pronounced 

than for nonhuman agent spectra (H2-1) and category boundaries were shifted towards the hu-

man endpoint of the spectrum (H2-2). Overall, these results suggest a quantitatively, though not 

qualitatively, different categorization process for spectra containing human endpoints. Possible 

reasons and the impact for virtual and robotic agent design are discussed.  
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1 INTRODUCTION 

Very human-like, though not perfectly human, robot entities are frequently perceived more nega-

tively than agents that are unambiguously human or nonhuman, a phenomenon termed the Un-

canny Valley (UV). For example, a study on human-computer interaction (HCI) has shown that 

embodied avatars are found to be more uncanny and to more strongly evoke negative emotions 

than their text-based counterparts (Ciechanowski, Przegalinska, Magnuski, & Gloor, 2018). Be-

ing exposed to “uncanny” agents that are neither clearly human nor nonhuman is also associated 

with a depletion of cognitive resources over time and negatively impacts cognitive performance 

during human-robot interaction (Wiese, Mandell, Shaw, & Smith, 2019). The aim of the current 

experiment is to examine to what extent phenomena previously associated with the UV, such as 

increased cognitive conflict processing due to categorical ambiguity, are specific to categorical 

uncertainty regarding an agent’s human-likeness (i.e., category A vs. human) as opposed to rep-

resenting general effects associated with categorization processes (i.e., category A vs. any cate-

gory B).  

Although empirical evidence in support of the existence of the UV has been increasing re-

cently (Chattopadhyay & MacDorman, 2016; MacDorman & Chattopadhyay, 2016; Mathur & 

Reichling, 2016), there is no clear consensus yet regarding its theoretical underpinnings (for a 

review, see Kätsyri, Förger, Mäkäräinen, & Takala, 2015). Two theories that receive most sup-

port in the literature are the categorical perception hypothesis and the perceptual mismatch hy-

pothesis: the categorical perception hypothesis purports that the physical appearance of human-

oid agents triggers a categorization-related cognitive conflict as to whether the agents represent 
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human or nonhuman entities, and that this conflict may result in negative emotional evaluations 

due to increased cognitive processing costs needed to resolve categorical ambiguities (Cheetham, 

Suter, & Jäncke, 2011). The perceptual mismatch hypothesis states that negative affinity associ-

ated with “uncanny” stimuli would be caused by an inconsistency between the human-likeness 

levels of specific sensory signals contained in nonhuman images, such as grossly enlarged eyes 

displayed on an otherwise perfectly human-like face (MacDorman, Green, Ho, & Koch, 2009). 

The categorical perception hypothesis is in line with insights from evolutionary biology linking 

categorization to survival and the failure to categorize stimuli to negative emotional responses 

(Burleigh & Schoenherr, 2015). Psychological research has further demonstrated that category 

boundaries exist for identification of facial images along morphed spectra (Cheetham, Pavlovic, 

Jordan, Suter, & Jancke, 2013; Cheetham et al., 2011; Cheetham, Suter, & Jancke, 2014; Looser 

& Wheatley, 2010; Yamada, Kawabe, & Ihaya, 2013; see Figure 1 for an illustration of the cate-

gory boundary concept), and that discrimination performance reaches its peak when agent imag-

es straddle the category boundary, indicating categorical ambiguity (Cheetham et al., 2011, 2014; 

Looser & Wheatley, 2010). Increased categorical ambiguity has been reported to coincide with 

negative stimulus evaluations in some studies (Burleigh, Schoenherr, & Lacroix, 2013; Ferrey, 

Burleigh, & Fenske, 2015; Yamada et al., 2013) but not in others (Cheetham et al., 2014; Looser 

& Wheatley, 2010; MacDorman & Chattopadhyay, 2016). Studies on the perceptual mismatch 

hypothesis suggest that the most negative affective evaluations are elicited by images where the 

mismatch between a subset of realistic (e.g., human face shape) and a subset of unrealistic image 

features (e.g., enlarged eyes) is maximal (MacDorman et al., 2009; Mäkäräinen, Kätsyri, & Ta-

kala, 2014; Mitchell et al., 2011; Seyama & Nagayama, 2007), and that maximal negative affini-
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ty does not coincide with maximal categorical uncertainty (when manipulating human-likeness 

within a category from rendered to real; see MacDorman & Chattopadhyay, 2016). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Visualization of the category boundary: A logistic function is fitted to categorization 

data (i.e., percentage of trials the respective agent was categorized as human; black line). The 

Morph Level at which categorization is most ambiguous, i.e. where the agent was categorized as 

human in 50% of trials and as nonhuman in 50% of trials, is called the category boundary (here 

at 70% Morph Level; dotted line).   

 

 Despite the progress that has been made in recent years in understanding the UV (with good 

empirical evidence for the perceptual mismatch hypothesis and some evidence for the categorical 

mismatch hypothesis; see Kätsyri et al., 2015), it remains unclear whether cognitive conflict pro-

cessing due to categorical uncertainty is specifically related to the perception of human-likeness 

(i.e., using spectra with a human endpoint) or rather occurs generally for all sorts of categorically 

ambiguous stimuli (i.e., for spectra without human endpoint), and whether categorical uncertain-

ty and negative affinity coincide when using cross-category spectra (i.e., robot-human, -animal, 

or -stuffed animal). The aim of the present experiment is to examine whether cognitive conflict 

processing in response to categorical ambiguity is specific to nonhuman-human judgments or 

occurs in a similar fashion for nonhuman-nonhuman judgments.  
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A prominent way to investigate categorical perception is to present morphed images, where 

a picture of category A (e.g., robot) is morphed into a picture of category B (e.g., human) in per-

cent steps resulting in a sequence of stimuli gradually decreasing in A-likeness and increasing in 

B-likeness (see Figure 1) and ask participants to categorize them as belonging to category A or 

category B (i.e., forced choice task). Using such a procedure with nonhuman agents as category 

A (i.e., left end of the spectrum) and human agents as category B (i.e., right end of the spectrum), 

it was found that categorization follows a qualitative pattern, with substantial changes in catego-

rization decisions only at the nonhuman-human category boundary (i.e., % physical humanness 

of the image that 50% of people categorize as “human”: at around 60-70% physical humanness; 

see Figure 1) but relatively constant categorization decisions to the left and right of the boundary 

(Cheetham et al., 2011; Hackel, Looser, & Van Bavel, 2014; Looser & Wheatley, 2010; Martini, 

Gonzalez, & Wiese, 2016; Mathur & Reichling, 2016; Yamada et al., 2013). Although pairs of 

morphed stimuli straddling the nonhuman-human category boundary were easier to discriminate 

than equally similar pairs of stimuli located on the same side of the boundary (improved perfor-

mance on same-different judgments; Cheetham et al., 2013), high reaction times indicate that 

morphed stimuli straddling the nonhuman-human category boundary are difficult to categorize 

(Yamada et al., 2013). In another study researching robotic agents, high reaction times have been 

associated with maximal negative affective evaluations (Mathur & Reichling, 2016). Negative 

evaluations of stimuli located at the category boundary have been associated with co-activation 

of competing categories, which requires additional cognitive resources to process (Ferrey et al., 

2015; Meng & Tong, 2004; Sterzer, Kleinschmidt, & Rees, 2009), and negatively impacts per-

formance on tasks that are sensitive to the drainage of cognitive resources over time (Mandell, 

Smith, & Wiese, 2017; Weis & Wiese, 2017; Wiese et al., 2019).  
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 How strongly ambiguous stimuli co-activate different categories and induce cognitive con-

flict between multiple categorizations can be measured using mouse tracking, a method in which 

mouse trajectories are recorded during a forced-choice task with labels representing category A 

and B in the top corners of the computer screen and the to-be-evaluated stimulus at the center 

bottom (for details, see section 2.2). Previous studies found that the mouse movements’ curva-

tures positively correlate with the degree of cognitive conflict the participants experience during 

categorization (Freeman & Ambady, 2010), and that negative affective evaluations reach their 

maximum where categorization is most difficult (Yamada et al., 2013), indicating that negative 

affective reactions to categorically ambiguous stimuli may be linked to increased cognitive pro-

cessing effort and decreased cognitive fluency (Winkielman, Schwarz, Fazendeiro, & Reber, 

2003).  

Although these studies provide evidence that morph spectra containing “human”, such as 

human-robot (Cheetham et al., 2011; Martini et al., 2016; Mathur & Reichling, 2016) or human-

doll (Hackel et al., 2014; Looser & Wheatley, 2010) spectra, show a categorical pattern with the 

maximum of categorization difficulty and the minimum of positive stimulus evaluations coincid-

ing at the category boundary (e.g., Mathur & Reichling, 2016), it is unclear whether this pattern 

would universally be observed for any kind of categorization or whether it is specific to categori-

zations that require a “human” versus “nonhuman” categorization. Whether evaluation patterns 

similar to those observed for nonhuman-human spectra would also be observed for spectra not 

containing the human category is an important question, as it informs us about whether phenom-

ena related to the uncanny valley are specific to perceptions of human-likeness or generally re-

lated to all sorts of categorization processes. The assumption that the UV may be specific to per-

ceptions of human-likeness is in line with several observations emphasizing the special status of 
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human versus nonhuman stimuli in social-cognitive processing: First, being exposed to human 

agents activates brain areas responsible for social-cognitive processing more strongly than being 

exposed to nonhuman agents (Looser, Guntupalli, & Wheatley, 2013; Özdem et al., 2016; Wag-

ner, Kelley, & Heatherton, 2011; Wheatley et al., 2011; Wiese, Buzzell, Abubshait, & Beatty, 

2018; Wykowska, Wiese, Prosser, & Müller, 2014), and activation in social brain areas is known 

to reflect the social relevance of observed behaviors and to enable reactions to observed actions 

that are social in nature (different from those triggered by nonhuman agents; Waytz, Cacioppo, 

& Epley, 2010; Wiese, Metta, & Wykowska, 2017; for reviews). Second, social categorization is 

a highly specialized process with different neural networks being involved in the identification of 

living versus non-living (Forde & Humphreys, 2002), primate versus non-primate (Tovée & Co-

hen-Tovée, 1993; Young & Yamane, 1992), and human versus animal (Assal, Favre, & Anderes, 

1984; McNeil & Warrington, 1993) stimuli, which can potentially affect the extent to which am-

biguous stimuli co-activate multiple category representations and trigger categorization conflicts. 

In line with this assumption, categorizations within the “human” category (e.g., male vs. female; 

Yamada et al., 2013) induce weaker negative affective evaluations than human versus nonhuman 

categorizations (e.g., human vs. robot; Mathur & Reichling, 2016). Third, observers seem to be 

more sensitive to detecting changes in physical features of ingroup versus outgroup facial stimuli 

(Hugenberg, Young, Bernstein, & Sacco, 2010; Hugenberg, Wilson, See, & Young, 2013), with 

the consequence that more confirmatory perceptual evidence is needed before a stimulus is cate-

gorized as belonging to an observer’s ingroup (e.g., human). As a result, the category boundaries 

are shifted from the center of the spectrum towards the ingroup side of the spectrum (e.g., Hackel 

et al., 2014; Sigala, Logothetis, & Rainer, 2011), which would match the location of the UV that 

is typically observed at around 70% human-likeness (for ingroup human observers).  
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To date, only very few studies have examined UV patterns in morph spectra not contain-

ing “human” stimuli (e.g., Campbell, Pascalis, Coleman, Wallace, & Benson, 1997; Ferrey et al., 

2015; Steckenfinger & Ghazanfar, 2009; Yamada, Kawabe, & Ihaya, 2012; Yamada et al., 2013). 

Yamada and colleagues (2013), for instance, used human and dog stimuli varying in their degree 

of realism from cartoonish to stuffed to real to show that increased categorization difficulty and 

negative evaluations were observable at transition points from cartoonish to stuffed to real within 

a given category. Increased categorization difficulty was also noticeable for animal-animal and 

fruit-fruit morphs (Ferrey et al., 2015; Yamada et al., 2012), as well as when macaque morphs 

with different degrees of realism were presented to macaque monkeys (Steckenfinger & Gha-

zanfar, 2009). Although these studies have shown that increased categorization difficulty at the 

category boundary can be observed for morph spectra not containing “human”, they cannot de-

termine whether spectra requiring human versus nonhuman categorizations (e.g., robot vs. hu-

man) differ from nonhuman versus nonhuman categorizations (e.g., robot vs. animal) in terms of 

the location of the category boundary and the extent of cognitive conflict that categorically am-

biguous stimuli induce. To the best of our knowledge, the only study that has compared nonhu-

man-human and nonhuman-nonhuman spectra has morphed the same nonhuman starting point 

(i.e., macaque) into nonhuman (i.e., cow) or human endpoints and showed that independent of 

the specific endpoint, categorizations were most difficult at the category boundary at around 40-

60% “category-B-ness” (Campbell et al., 1997). Although this finding suggests that the area of 

highest categorization difficulty is located around the category boundary, it does not precisely 

determine the location of spectrum-specific category boundaries and does not assess if categori-

zation difficulty is comparable across spectra or significantly enhanced for spectra containing 

“human” as endpoint. We will address these questions in the current experiment. 
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1.1 Aim of Study 

As argued in the above, the human category seems to have an exceptional status, both on the 

neural and the behavioral level, which raises the question to what extent typical findings associ-

ated with the UV, such as the rightward shift in the location of the category boundary towards 

the human end of the spectrum (i.e., 60-70% physical human-likeness) and the observation of 

increased categorization difficulty for stimuli located at the category boundary are specific to 

evaluations of a stimulus’ humanness rather than a general effect of categorical processing. In 

the current study, we first investigate whether the assumptions of the categorical perception hy-

pothesis hold for both human and nonhuman agent spectra, i.e. if human and nonhuman agent 

spectra exhibit a category boundary (H1-1) and if cognitive conflict is highest in proximity of 

that boundary (H1-2). Second, we examine whether categorizations of humanlike stimuli differ 

from categorizations of non-humanlike stimuli due to the special social status of the “human” 

category. Specifically, we explore whether the nature of a spectrum’s endpoint (i.e., category B) 

affects the location of its category boundary (i.e., right shift for spectra with a human endpoint; 

H2-1), as well as the strength of cognitive conflict that is induced by categorically ambiguous 

stimuli at the category boundary (i.e., higher cognitive conflict for spectra with a human end-

point; H2-2). 

2 EXPERIMENTS 

To examine these questions, we first acquired photos of human and nonhuman agents to be later 

on used as endpoints for a morphing procedure. Since the category of nonhuman social agents is 

quite heterogeneous in terms of features other than humanness, we further differentiated the non-

human agents into agents that are alive (i.e., animals) and agents that are not alive (i.e., stuffed 

animals) to be able to separate effects of “humanness” from those of “aliveness” (see Gray, Gray, 
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& Wegner, 2007; for the importance of animacy). In order to validate how the human and non-

human agents (robot, stuffed animal, animal, human) were perceived, we conducted a pilot study 

in which participants were asked to rate the agents in terms of ”humanness”, “aliveness”, and 

“similarity-to-self”. For the main experiment, an image morphing procedure was employed to 

create three spectra with the same starting point (i.e., robot) and three different target agents as 

end points (nonhuman-nonalive: stuffed animal; nonhuman-alive: animal; human-alive: human): 

robot-stuffed animal, robot-animal and robot-human. To avoid confounds due to perceptual fea-

tures specific to single spectra, we created nine spectra for each of the three target agents (see 

Stimuli for details). In the main experiment, a mouse-tracking paradigm was used that required 

participants to categorize agent images along a spectrum from category A to category B as either 

belonging to category A (e.g., nonhuman) or category B (e.g., human) by making mouse move-

ments towards a text box representing the respective category on a computer screen (see Task for 

details) while mouse movement curvatures and movement onsets were measured.  

We hypothesized that all spectra would exhibit category boundaries (H1-1) and that catego-

rization would be most difficult at the spectrum-specific category boundaries (see Hackel et al., 

2014), which would be reflected in mouse curvatures being maximal when categorizing stimuli 

that are located around the category boundary (H1-2; see Yamada et al., 2013; for reaction time 

data). We expected locations of spectrum-specific category boundaries to be modulated by the 

group status of its endpoint (ingroup versus outgroup), such that the category boundary would be 

shifted towards that end of the spectrum that participants identify with more (H2-1; see Hackel et 

al., 2014; for rating data). We also hypothesized categorization difficulty to be influenced by the 

nature of the categorization task, such that categorizations requiring assignments of “own group 

status” to a stimulus (e.g., human) would cause more uncertainty than categorizations requiring 
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the assessment of “other group” categories (e.g., animal) thus leading to more pronounced mouse 

curvatures (H2-2; in line with Sigala et al., 2011).  

2.1 Pilot Experiment 

The pilot experiment served the purpose of validating the stimuli used in the mouse tracking 

study. Specifically, the aim was to validate that stimuli depicting human agents were indeed 

unique in being more “human”, “alive”, and “similar-to-self” than the nonhuman stimuli. For 

that purpose, we presented all agent images (nine per category: robot, stuffed animal, animal and 

human) in an online survey and asked participants to rate them in terms of their “humanness”, 

“aliveness” and “similarity-to-self” on a 7-point Likert scale. The experiment was programmed 

and hosted on Qualtrics (www.qualtrics.com).  

2.1.1 Methods & Materials 

2.1.1.1 Participants 

77 participants were recruited via Amazon Mechanical Turk (www.mturk.com). One participant 

was excluded because of an unreasonably large amount of time needed to complete the survey, 

resulting in a final sample size of 76 participants (42 females, mean age: 32.6, range: 21 – 76). 

All participants reported normal or corrected-to-normal vision and gave informed consent prior 

to participating. The study took about 15 minutes to complete, and participants received $ 0.20 

for their participation. 

2.1.1.2 Stimuli 

In total, 36 photographs were presented during the experiment, nine for each of the four agent 

categories (i.e., robot, human, animal, stuffed animal); see Figure 2. Photographs were acquired 

using the following procedure: first, robot names were obtained from Mathur & Reichling (2016), 
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and the photos were subsequently gathered using a Google image search. Only full-frontal pho-

tos depicting robots with human-like faces (i.e., having eyes and nose) were included in the study. 

Second, after selection of the robot photos, they were matched on apparent gender, head orienta-

tion, and facial features with a photo from the MUCT (Milborrow University of Cape Town) 

human face image database (Milborrow, Morkel, & Nicolls, 2010), with a photo from the Stan-

ford dog database (Khosla, Jayadevaprakash, Yao, & Li, 2011), and with a photo from a Google 

image search with the term “stuffed animal”. All photos were cropped to a 1:1 aspect ratio and 

rescaled to 450 x 450 pixels. After rescaling, all backgrounds were removed. 

 

  

  

  

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Source Images: These photographs were used as start- and endpoints for the morph-

ing spectra. Each of the human, animal, and stuffed animal agents was morphed into the robot 

agent on top of the respective column. Spectra created with the transparent images were exclud-

ed for the final analysis of the main experiment. For details, see Stimuli.   

 

 

2.1.1.3 Design, Procedure, and Task 

The task followed a one-factorial design with the within-participants factor Agent (four levels: 

human, robot, animal, stuffed animal). After starting the experiment online, participants were to 
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read and agree to the consent form and fill out a brief demographic survey. Subsequently, partic-

ipants were shown the instructions and began the main part of the pilot study. Participants’ task 

was to rate the different agents on humanness (“This agent is human.”), aliveness (“This agent is 

alive.”), and similarity-to-self (“This agent is similar to me.”). Each trial, the image of one agent 

and a 7-point Likert scale (Strongly disagree, Disagree, Somewhat disagree, Neither agree nor 

disagree, Somewhat agree, Agree, Strongly agree) was shown. Only one dimension was tested 

per trial. Trials were blocked with respect to the different rating dimensions, resulting in 36 trials 

for each block and 108 trials in total. Block order as well as agent order within blocks was ran-

domized.  

 

Figure 3. Aliveness, Humanness, and Similarity-to-Self Ratings of Source Images: The human imag-

es were perceived as being more alive, more human, and more similar to self than the other images (see 

Results for more details). Ratings were obtained based on a Likert scale ranging from 1 (strongly disagree) 

to 7 (strongly agree). Error bars depict SEM. stu: stuffed animal, rob: robot, ani: animal, hmn: human; 

*** : p < .001 

 

2.1.2 Results & Discussion 

Humanness, aliveness, and similarity-to-self were each analyzed with a one-way ANOVA with 

the factor Agent (stuffed, robot, animal, human) and followed up with post-hoc paired t-tests. 
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Aliveness, humanness, and similarity-to-self differed between Agents (all F(3,  225) > 100, all p 

< .001, all η²G > .4; see Figure 3). Human stimuli were perceived as being more alive than the 

animal (t(75) = 5.62, p < .001), robot (t(75) = 15.81, p < .001) and stuffed animal (t(75) = 16.24, 

p < .001) stimuli. The human agents were also perceived as being more human and more similar-

to-self than the animal, robotic, or stuffed animal agents (all t(75) > 14, all p < .001).  

Results suggest that the images chosen as start and end points for the to-be constructed 

morph spectra show the desired differentiation of aliveness, humanness, and similarity-to-self 

ratings between “human” and “nonhuman” agents, and can therefore be used to create the morph 

spectra for the main experiment. The associated R analysis script and data files can be freely 

accessed online through the Open Science Framework at https://osf.io/w76eq/. 

2.2 Mouse Tracking Experiment 

The goal of the mouse tracking experiment was to examine Hypotheses 1 and 2. In particular, the 

experiment investigated whether the different spectra, irrespective of the target agent, exhibited 

signs of a categorical boundary (H1-1), with maximal cognitive conflict processing around said 

boundary (H1-2) and whether the location of the categorical boundary (H2-1) and the magnitude 

of the cognitive conflict (H2-2) around the boundary were altered for the spectra with the human 

target agent. 

2.2.1 Methods & Materials 

2.2.1.1 Participants 

165 undergraduate students participated in this experiment, and were randomly assigned to one 

of the three different experimental conditions: robot-human spectrum, robot-animal spectrum or 

robot-stuffed animal spectrum. Two participants were excluded because their categorization be-
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havior could not be fitted with a sigmoid function, resulting in a final sample size of 163 partici-

pants (robot-human: 40 females, mean age: 21.2, range: 18 – 29; 47 right handed; robot-animal: 

40 females, mean age: 19.7, range: 18 – 39; 51 right handed; robot-stuffed animal: 35 females, 

mean age: 19.8, range: 18 – 35; 45 right handed). All participants reported normal or corrected to 

normal vision, had not been diagnosed with a psychological or neurological disorder, and were 

not taking any medications affecting the central nervous system at the time of data collection. 

The Ethics Committee at George Mason University approved the experiment, and participants 

provided informed consent prior to participation.  

2.2.1.2 Apparatus 

Stimuli were presented at a distance of about 57 cm on an ASUS VB198T-P 19-inch monitor set 

to a resolution of 1280 × 1024 pixels and a refresh rate of 65 Hz using the Mouse Tracker soft-

ware (Freeman & Ambady, 2010). Mouse clicks and trajectories from an USB-connected optical 

mouse were recorded. 

2.2.1.3 Stimuli 

Pictures along nine different morphing spectra for each target morph condition (human, animal, 

stuffed animal) were created using the morphing software FantaMorph 5.4.8 (Abrosoft). More 

than one spectrum for each target agent condition was chosen in order to increase external validi-

ty and to minimize artifacts originating from specific source photographs. Along each spectrum, 

the produced morph images were set apart by 5% morphing steps, resulting in 21 stimuli for each 

spectrum (see Figure 4; for examples). Since each target condition consisted of nine spectra, 189 

stimuli were created for each target agent condition, resulting in 567 stimuli for the whole study 

with three target conditions. Each spectrum was based on one photograph of a unique face of the 

respective target category (human, animal, stuffed animal) and one portrait of a unique robot (see 
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Figure 2 and Pilot Experiment for details about image selection). To ensure comparable fidelity 

among morph images, high priority was given to smoothly morph eyes, noses, eyebrows, and 

head shape (requiring at least eight reference points for each feature). All images had a resolution 

of 450 x 450 pixels. All image backgrounds were removed after morphing. 

 

Figure 4. Example Spectra for each Target Agent: A robot image (top left) was morphed into a target 

image (bottom right) in steps of 5%, resulting in a set of 21 stimuli per spectrum. Target images belonged 

to one of three Target Agent categories: human (a), animal (b), or stuffed animal (c).  

 

2.2.1.4 Task 

Participants were asked to categorize the morph images as belonging either to a given agent cat-

egory (e.g., human) or not (e.g., non-human). Specifically, participants in the human, animal, and 

stuffed animal conditions were asked to categorize the images as “human” or “non-human”, “an-

imal” or “non-animal”, or “stuffed animal” or “non-stuffed-animal”, respectively. Morphed im-

ages were presented one at a time in the bottom center of the computer screen and the order of 

their presentation was randomized throughout the experiment. At the beginning of each trial, 

participants had to click a start button located in the bottom center of the screen to make the im-

age appear. Afterwards, participants were asked to move the mouse cursor from the bottom cen-

ter of the screen (where the image was placed) to one of two response boxes positioned in the left 

and right top corners of the screen (depicting the two different categories) to indicate whether the 

image belonged to a given agent category or not (e.g., “human” versus. “non-human”). During 
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this decision-making process, mouse movement onset times and curvatures were measured; see 

Figure 5. Clicking one of the two response boxes concluded the trial. Between trials, a blank 

screen was presented for 1000 ms (i.e., inter trial interval, ITI). Response boxes in the top cor-

ners of the screen were always shown right from the beginning of the trial; agent images only 

appeared after the start button was pressed.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Example Trial: After pressing the start button, an agent image appeared on the screen (center, 

bottom) and participants were to categorize the image as either belonging to the target category (here, 

human) or not belonging to the target category by moving the mouse cursor to one of the two answer 

boxes (top left and right, respectively). The dotted black line shows an example mouse trajectory. The 

dotted gray line represents an ideal trajectory with no measurable cognitive conflict. The solid gray line 

represents maximum deviation (MD), a measure of cognitive conflict for the black trajectory. Note that 

for MD calculations, the trajectory is first standardized with respect to time (for details, see Freeman & 

Ambady, 2010). Between trials, a blank screen was presented for 1000ms. 

 
 

2.2.1.5 Cognitive Conflict Measurement 

Analyzing mouse movements supposedly captures cognitive conflict and co-activation of catego-

ries more precisely than reaction times, and can be obtained using the Mouse Tracking software 

developed by Freeman and Ambady (2010). The software allows for obtaining time-standardized 

mouse trajectories of individual trials and computing each trajectory’s maximum deviation (MD) 
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from a straight line towards the answer box (for an illustration, see Figure 5), which is an estab-

lished measure of cognitive conflict processing in mouse-tracking studies (Freeman & Ambady, 

2010). A similar Mouse-Tracking-based indicator of cognitive conflict is area under the curve 

(AUC; Freeman & Johnson, 2016). For the current paper, since both measures capture the same 

process, we decided for the MD and against the AUC measure, as it is slightly easier to explain 

conceptually. To account for the fact that cognitive conflict could also be reflected in participants’ 

hesitation to move the mouse immediately after stimulus presentation (i.e., participants pause to 

figure out what they are looking at) time-to-first mouse movement after stimulus presentation is 

also recorded.  

2.2.1.6 Design & Procedure 

The experiment followed a two-factorial design with the within-participants factor Morph Level 

(ranging from 0% to 100% category B-ness in steps of 5%; e.g., 0 to 100% human) and the be-

tween-participants factor Target Agent (Human, Animal, Stuffed Animal). All target agents were 

morphed into the same robot images, resulting in three different morphing spectra (robot-human, 

robot-animal, robot-stuffed animal) with 21 morphing levels for each spectrum. 

At the beginning of the experiment, participants were seated in front of a computer and 

signed the informed consent form. Participants were then given instructions for the main task and 

asked to always answer as quickly as possible. This was done to maximize the chance that partic-

ipants started with the mouse movement immediately after the stimulus was presented (time-to-

first mouse movement was measured to control for mouse movement onset time). After partici-

pants read the instructions, they were asked to perform three practice trials to familiarize them-

selves with the mouse-tracking procedure. The stimuli used for the practice were created sepa-

rately and not drawn from any of the experimental morph spectra. Upon completion of the prac-
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tice trials, the main experiment began, during which participants categorized 189 agents (9 spec-

tra per target agent group, with 21 morphing levels each). Each image was presented once per 

participant with the order of the images being randomized across the experiment. The main task 

took about 15 minutes to complete. After having completed the questionnaire, participants were 

informed about the purpose of the experiment and received course credit before the session con-

cluded.  

 

2.2.2 Results & Discussion 

Trials with extreme categorization times deviating more than 2.5 standard deviations from the 

individual mean were excluded from analysis, leading to an exclusion of 2.3% of all trials. Also, 

one spectrum in each condition was excluded because one of the base stimuli was perceived as 

categorically ambiguous. A spectrum was excluded when, in the grand average, either the 0% 

morph was categorized as animal, stuffed animal, or human, respectively, in more than 10% of 

trials, or the 100% morph was categorized as either animal, stuffed animal, or human, respective-

ly, in less than 90% of trials (please see transparent images in Figure 2). Effect sizes are reported 

as generalized eta squared (ηG
2
), enabling comparison between between-participants and within-

participants designs (Bakeman, 2005). The associated R analysis script and data files can be 

freely accessed online through the Open Science Framework at https://osf.io/w76eq/. 

2.2.2.1 Hypothesis 1-1: All spectra exhibit spectrum-specific category boundaries 

We expected all spectra, irrespective of target agent, to possess category boundaries. To investi-

gate the existence of categorical boundaries, a three-parameter logistic function (see Equation 1) 

was fitted to each participant’s individual data (predictor variable: Morph Level; response varia-

ble: Proportion of category B categorizations). Parameter L defines the upper asymptote, param-
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eter k the growth rate, and parameter x0 the predictor level at which the growth rate is the highest. 

For example, for values of x between 1 and 100, an L of 1, an x0 of 50, and a k of 0.05, the func-

tion returns y values from below 0.1 (for low x) that rise in a non-linear s-shape to values above 

0.9 (for high x). A one-sample t-test on growth parameters (i.e., parameter k in Equation 1) was 

used separately for the three target agent conditions (i.e., t-tests for human, animal, and stuffed 

animal target agents) to test deviation from linearity (see Cheetham et al., 2011; for a comparable 

procedure). Growth parameters above zero
1
 indicate a nonlinear relationship (see Cheetham et al., 

2011).  

 

𝑓(𝑥) =
L

1+ 𝑒−k∗(x−x0)                                                                (1) 

 

                                                 

1
 As a more conservative analysis, we conducted one-sample t-tests testing the sample growth rate against a growth 

rate of 0.05. We chose this value because the example function with parameters L = 1, k = 0.05, and x0 = 50 already 

shows a decent deviation from linearity. A value of 0.01 on the other hand still shows a highly linear pattern. All t-

tests remained significant with t > 8.5 and p < 0.001. We also confirmed the results with a bootstrapping method that 

allows capturing the uncertainty of the k estimates, which is occluded in the previous approach. We drew 163 partic-

ipants with replacement from the participant pool and within each participant eight spectra with replacement from 

the eight spectra available. For this bootstrapped sample, we fitted the sigmoid function as in the original analytic 

approach and repeated the procedure 1000 times. The resulting 95% confidence intervals for the k parameter do 

neither include the liberal criterion of 0 nor the more conservative criterion of 0.05 (CIanimal= [.16 .53], CIhuman= 

[.24 .84], CIstuffed animal= [.12 .35]). Note that the estimated k values are higher when using the bootstrapping in com-

parison to using the original method because the sampling with replacement frequently leads to the exclusion of one 

or more spectra which leads to less “smearing” due to averaging across spectra with different PSEs. We thank an 

anonymous reviewer for suggesting this method.  
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In general, the logistic function fitted the individual data very well. R
2 

for individual fits 

ranged from 0.704 to 0.997. Mean R
2
 values

 
were comparably high for all Target Agent condi-

tions (R
2

animal= 0.958, R
2
human= 0.966, R

2
stuffed animal= 0.933).  

Participants exhibited step-like, in contrast to linear, functions when categorizing stimuli 

along the robot to human (t(53) = 14.05, p < .001, M = 0.21), robot to animal (t(54) = 16.88, p 

< .001, M = 0.14), and robot to stuffed animal (t(53) = 15.66, p < .001, M = 0.11) dimensions; 

see Figure 6a. Thus, for all Target Agents (human, animal, stuffed animal), the respective spec-

trum exhibited regions with low categorical uncertainty and, around the category boundary, re-

gions with high categorical uncertainty. As a next step, we averaged across participants within 

target agent conditions and extracted spectrum-specific category boundaries by predicting the 

morph level at which 50% of the stimuli are categorized as category A and 50% as category B 

(i.e., Point of Subjective Equality; PSE): 71% physical human-likeness for the robot-human 

spectrum, 63% of physical animal-likeness for the robot-animal spectrum, and 37% of physical 

stuffed animal-likeness for the robot-stuffed animal spectrum (Figure 6a). 
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Figure 6. Cognitive Conflict at Category Boundary: (a) For all three Target Agents, the spectra exhib-

ited a categorical boundary (see Results: Hypothesis 1 for details). (b) Cognitive conflict varies with phys-

ical distance from the robot and, on a descriptive level, peaks around the category boundary. Error bars 

depict SEM. MD: Maximum Deviation (see Methods; for details). *** : p < .001, n.s. : p > .05  

 

2.2.2.2 Hypothesis 1-2: Cognitive conflict is maximal at spectrum-specific category boundaries  

We expected cognitive conflict processing to peak at the spectrum-specific category boundaries 

reported above. Cognitive conflict was measured using maximal deviation (MD), a measure de-

rived from mouse trajectories (Figure 5). To investigate whether cognitive conflict processing 

peaked at the category boundary between the robotic and the target agents, a two-step procedure 
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was employed. First, a mixed ANOVA with the within-factor Morph Level (0% to 100% catego-

ry B-ness), the between-factor Target Agent (human, animal, stuffed animal) and MD as depend-

ent variable was conducted as an omnibus test. A significant interaction would indicate cognitive 

conflict to be distributed differentially along the morph levels for the different target agents, 

which is what we expect since the three different target agents are associated with different cate-

gory boundaries (71%, 63%, and 37%, respectively; see H1-1). Second, linear regression anal-

yses were employed to investigate whether the location of the individual category boundaries (in % 

category B-ness) and the location with maximal cognitive conflict (in % morph level, which 

equals % category B-ness) co-varied. 

The omnibus test indicated that cognitive conflict was altered as a function of Morph 

Level (F(20, 3200) = 4.18, p < .001, ηG² = .03), but not Target Agent (F(2, 160) = .79, p = .455, 

ηG² = .01). The interaction between Morph Level and Target Agent was significant (F(40, 3200) 

= 10.90, p < .001, ηG² = 0.12), confirming that the variation of MD along the morph levels dif-

fered between target agent types (Figure 6b). Post-hoc tests that were conducted to further in-

vestigate the interaction are reported in the supplemental materials.  

The linear regression analyses provided evidence that maximal cognitive conflict pro-

cessing and the location of the category boundary also coincide on the individual subject level: 

the category boundaries (i.e., morph level at which a given participant would categorize the 

stimulus as belonging to the target category, e.g., “human”, in 50% of trials) were extracted from 

individually fitted logistic functions. For each morph spectrum (robot-human, robot-animal; ro-

bot-stuffed animal), the individual categorical boundaries were then used to predict the location 

of individual MD maxima (i.e. morph level at which the participant’s cognitive conflict was 

highest) to determine whether the location of the category boundary and the location of the MD 



 

 

 

25 

maxima were likely to co-occur. Results show that individual category boundary locations were 

able to predict the location of individual cognitive conflict maxima for human target agents (F(1, 

52) = 21.75, p < 0.001, Radj
2
 = 0.28)), animal target agents (F(1, 53) = 73.19, p < 0.001, Radj

2
 = 

0.57), and stuffed animal target agents (F(1, 52) = 21.83, p < 0.001, Radj
2
 = 0.28); see Figure 7

2
. 

To validate that category boundary location not only predicted cognitive conflict maxima loca-

tion but that both variables indeed co-occurred at the same location, we also report whether the 

intercept of the linear regressions differed from 0 and whether the slope differed from 1. Neither 

the intercept (human target agent: t(52) = 0.53, p = 0.60; animal target agent: t(53) = 1.81, p = 

0.08; stuffed animal target agent: t(52) = 0.06, p = 0.95) nor the slope (human target agent: t(52) 

= 0.77, p = 0.44; animal target agent: t(53) = 1.81, p = 0.08; stuffed animal target agent: t(52) = 

0.05, p = 0.96) were significantly different from 0 and 1, respectively. Taken together, the pre-

ceding analyses suggest that maximal cognitive conflict and the location of the category bounda-

ry tend to coincide, irrespective of whether the categorization included human or nonhuman tar-

get agents, thereby supporting H1-2.  

                                                 

2
 To validate the findings with MD as measure for cognitive conflict, we conducted the same 

analyses with AUC as measure for cognitive conflict. Results were highly similar for human 

target agents (F(1, 52) = 24.90, p < 0.001, Radj
2
 = 0.31)), animal target agents (F(1, 53) = 53.11, 

p < 0.001, Radj
2
 = 0.49), and stuffed animal target agents (F(1, 52) = 31.73, p < 0.001, Radj

2
 = 

0.37). 
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Figure 7. Relationship between Individual Cognitive Conflict Maxima and Individual Category 

Boundaries: For all three dimensions, irrespective of Target Agent, the location of the category boundary 

can be used to predict the location of the cognitive conflict maximum as measured by maximum deviation 

of the mouse curvatures used during categorization. *** : p < .001. 

 

2.2.2.3 Hypothesis 2-1: Category boundary shift towards ingroup, rendering the ingroup more 

exclusive  

In line with previous studies, it was hypothesized that the spectrum-specific category boundaries 

are shifted towards the end of the spectrum that was most representative of “own” group status 

(i.e., human). A one-factorial ANOVA with Target Agent (human, animal, stuffed animal) as 

between-participants factor and individual category boundaries as dependent variable was em-

ployed as an omnibus test and followed up with independent t-tests. The procedure for compu-

ting the location of individual category boundaries is analogue to the procedures employed for 

H1-1.  

Results of the omnibus showed a significant effect of Target Agent on the location of the 

category boundary (F(2, 160) = 87.95, p < .001, η²G = .52) with the category boundary for the 

human target agent being located at 70.2%, for the animal target agent at 61.6%, and for the 

stuffed animal target agent at 36.9% of category B-ness (i.e., human, animal or stuffed animal). 

Three independent post-hoc t-tests confirmed significantly different category boundary locations 

between all target agent categories (all t > 3.4, all p < .001) with “human” as the most exclusive 
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category. Please note that the slight differences between the category boundary locations report-

ed here and in Figure 6a stem from the fact that in the current analysis, logistic functions were 

fitted to individual rather than grand average data. Also note that these results imply that there is 

not only a shift in the location of the category boundary between spectra with human and non-

human target agents but also between spectra with nonhuman animal and nonhuman stuffed an-

imal target agents. 

2.2.2.4 Hypothesis 2-2: Stronger conflict for outgroup-ingroup than outgroup-outgroup cate-

gorizations  

We hypothesized that due to the higher social relevance, as well as the deeper neural processing 

of human stimuli, decisions requiring human-nonhuman categorizations would be associated 

with a higher magnitude of cognitive conflict than nonhuman-nonhuman categorizations. To test 

this hypothesis, we took each participant’s cognitive conflict for the morph levels left and right 

of the average spectrum-specific category boundary (e.g., MD at 70% and 75% humanness for 

the robot-human spectrum with the average category boundary at 71% morph level), averaged 

across both values, and used these average scores to compare the extent of cognitive conflict 

processing between human target agents (i.e., “own”) and nonhuman target agents (i.e., “other”: 

animal and stuffed animal) using an ANOVA (DV: MD at categorical boundary; IV: Target 

Agent) as omnibus test and independent one sided t-tests as follow-up analyses. 

When not accounting for mouse movement onsets, cognitive conflict measures at spec-

trum-specific category boundaries did not differ between target agents, that is: high categorical 

uncertainty was associated with comparable cognitive conflict irrespective of whether the cate-

gorization involved human target agents (F(2, 157) = .55, p = .577, η²G < .01 M(human) = .44, 

M(animal) = .39, M(stuffed animal) = .40). However, when only looking at trials where partici-
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pants started the mouse movement immediately after stimulus presentation (i.e., 300 ms after 

stimulus presentation or less), which is required for a meaningful interpretation of mouse track-

ing data
3
, cognitive conflict measures around the category boundary were impacted by target 

agent (F(2, 157) = 5.74, p = .004, η²G = .07).  Follow-up one-sided independent t-tests revealed 

higher cognitive conflict processing for categorizations involving “human” versus “nonhuman” 

stimuli (human vs. animal: t(104) = 3.37, p < .001, M(human) = .57, M(animal) = .38; human vs. 

stuffed animal: t(104) = 1.98, p = .025; Figure 8a). A follow-up two-sided t-test revealed no 

differences in cognitive conflict processing for categorizations involving two types of “nonhu-

man” stimuli (M(stuffed animal) = .45; animal vs. stuffed animal: t(106) = 1.33, p = .187; Figure 

8a).  

The 300 ms threshold was determined post-hoc through visual inspection of the relation-

ship between mouse movement onset and cognitive conflict measures across all trials (Figure 

8b). Below threshold, cognitive conflict was stable at around 0.4 and steadily declined thereafter 

(i.e., MD declined from around 0.4 at threshold to around 0 for a 1000 ms onset delay), indicat-

ing that in trials above threshold, participants might have partially resolved the cognitive conflict 

before starting to move the mouse. Mouse movement onset was above threshold in 45.9% of 

trials. Five participants had to be excluded from threshold-related analyses because their mouse 

                                                 

3
 The quality of cognitive conflict measures in mouse-tracking studies increases if participants have to start moving the mouse 

immediately after stimulus onset (Scherbaum & Kieslich, 2017). If participants start moving the mouse only after they resolved 

the conflict, MD as well as other measures relying on the mouse trajectory are not able to capture conflict processing. Here, ‘the 

first mouse movement’ was defined by the time at which participants moved the cursor more than 20 pixels either horizontally or 

vertically. Note that we expect cognitive conflict to be also present in trials with a movement onset later than 300ms. However, in 

these trials, the conflict is supposedly not captured by the mouse movement data because it had already been resolved before 

movement onset. Therefore, we exclude trials with late mouse movement onset only for this specific analysis.  
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movement onset was above threshold for all trials in proximity to the category boundary. For 

exploratory purposes, we also provide a graph comparing cognitive conflict processing above 

and below threshold for all morph levels in the Supplemental Materials (Figure S1).  

 

  
 

Figure 8. Cognitive Conflict Around Category Boundary: (a) If trials with delayed mouse movement 

onset are excluded, human target agents inflict higher cognitive conflict around the category boundary 

than the other target agents. Error bars depict SEM. (b) Cognitive conflict processing declines with in-

creasing mouse movement onset times. The gray line represents the loess curve (used for smoothing), 

which is obtained by locally weighted polynomial regressions for each point (e.g., Cleveland, Grosse, & 

Shyu, 1992) and was computed with the standard parameters of R’s (R Core Team, 2013) loess function. 

The loess curve was fitted using the whole dataset whereas the plot is zoomed in (minimal and maximal 

MD and maximal Mouse Movement Onset Values not depicted) and thus represents the majority but not 

the entirety of data. hmn: human, ani: animal; stu: stuffed animal; *** : p < .001, * : p < .05, n.s. : p > .05. 
 

3 GENERAL DISCUSSION 

It was explored to what extent previously reported observations associated with categorical per-

ception of social entities, such as an increased categorization difficulty and shifts in the location 

of the category boundary, are general phenomena observed for categorically ambiguous stimuli 

or specific phenomena related to stimuli that are ambiguous in terms of their humanness (i.e., 

“human” versus “nonhuman”; e.g., Cheetham et al., 2011; Looser & Wheatley, 2010; Weis & 

Wiese, 2017). Using mouse tracking, it was shown that cognitive conflict processing indicative 

of categorical ambiguity peaks around the spectrum-specific category boundaries for all agent 
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spectra independent of whether they contained a human endpoint or not. However, both the ex-

tent of cognitive conflict processing and the location of the spectrum-specific category bounda-

ries were affected by the specific categorization that needed to be made, that is: stimuli located at 

a nonhuman-human category boundary induced stronger cognitive conflict processing than stim-

uli located at a nonhuman-nonhuman category boundary with no difference in the extent of cog-

nitive conflict processing between nonalive-alive (i.e., robot-animal) and nonalive-nonalive (i.e., 

robot-stuffed animal) categorizations within the nonhuman spectra. 

The observation that cognitive conflict is increased for all stimuli located at spectrum-

specific category boundaries and not only for stimuli of ambiguous human-likeness suggests that 

increased processing costs for ambiguous stimuli are not specific to nonhuman-human categori-

zations but can be found independently of the spectrum’s nature and the location of its category 

boundary. The results are in line with previous studies linking categorical perception to increas-

ing cognitive processing costs (Weis & Wiese, 2017; Yamada et al., 2013), and reduced cogni-

tive performance (Mandell et al., 2017; Wiese et al., 2019), with costs being highest and perfor-

mance being lowest for categorically ambiguous stimuli. The universal observation of cognitive 

conflict processing for all spectra is also in line with certain claims of the inhibitory-devaluation 

hypothesis (Ferrey et al., 2015), stating that phenomena related to categorically ambiguous stim-

uli (i.e., falling on the mid point of the spectrum) are not directly related to human-likeness per 

se, but instead reflect a more general form of stimulus devaluation that occurs when inhibition is 

triggered to resolve conflict between competing stimulus-related representations. Please note that 

although no affective measures were obtained in the current study, the results indicate that con-

flict between competing categorical representations is observable for all examined spectra and 

not dependent on considerations regarding a stimulus’ human-likeness. Since increase in cogni-
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tive processing costs and decrease in cognitive fluency has been linked to negative emotional 

reaction in previous studies, it is conceivable that conflict processing related to categorical ambi-

guity may cause negative affective reactions to uncanny stimuli; this hypothesis, however, would 

have to be tested empirically in future experiments.  

Nevertheless, although signs of categorical processing were observed for all examined 

spectra, the current findings do indicate that both the extent to which categorically ambiguous 

stimuli induce a cognitive conflict (i.e., nonhuman-human categorical transitions induce more 

pronounced mouse curvatures than nonhuman-nonhuman categorical transitions), and the loca-

tion of the category boundary (i.e., category boundary is biased towards “alive” stimuli and even 

more so towards “human” stimuli) are modulated by whether the categorization required deci-

sions regarding a stimulus’ human-likeness, which indicates that certain aspects of categorical 

processing are enhanced during the perception of humanness. The observation that nonhuman-

human categorizations exhibit pronounced cognitive conflict suggests that conflict resolution 

might be easier for spectra that do not contain the human category (e.g., robot-animal) than for 

spectra that contain human and nonhuman categories (e.g. robot-human). There are several pos-

sible explanations for this: First, as detailed in the introduction, “human” may be a privileged 

category for human observers and increase the motivation to perceive an ambiguous stimulus as 

“human” even though it possesses some physical features that suggest otherwise (e.g., exagger-

ated eyes or disproportionate eyes-nose-mouth relations). This is even more conceivable given 

that humans should have more perceptual expertise in processing human faces than nonhuman 

“faces” given the steady exposure to human faces. It is possible that increased cognitive conflict 

for stimuli of ambiguous physical humanness is the consequence of an ongoing competition be-

tween top-down mechanisms that lead to the expectation of a “human” stimulus and bottom-up 
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mechanisms triggered by physical agent features implicating a “nonhuman” classification. This 

interpretation would be in line with previous studies showing that being in need for social con-

nection lets individuals accept nonhuman stimuli as human despite the presence of contradicting 

perceptual information (Hackel et al., 2014). Similarly, it is possible that the presence of human 

features activate the “human” category, which is then repeatedly suppressed by knowledge that 

the entity is in fact not human (Misselhorn, 2009). It cannot be excluded, however, that increase 

in cognitive conflict processing for the robot-human morphs compared to the robot-nonhuman 

morphs is simply due to stronger reactions to morphed images containing “human” than “non-

human” information (see Kätsyri et al., 2015; for a criticism of morphed images to study uncan-

ny valley effects). Relatedly, it can also not be excluded that increase in cognitive conflict pro-

cessing is related to changes in certain perceptual features (e.g., participants may have high per-

ceptual thresholds for accepting skin color as human-like but not for nose shape, for instance) as 

opposed to categorical ambiguity (e.g., high thresholds for the holistic perception of a stimulus 

as “human” versus “nonhuman”). In other words, it is possible that perceptual ambiguity may 

triggered by one (or a subset of) facial feature(s) rather than the face as a holistic stimulus (in 

line with Moore, 2012; also see MacDorman & Chattopadhyay, 2016). Second, stimuli that pos-

sess human-like physical features or show human-like motion patterns (Castelli, Happé, Frith, & 

Frith, 2000) trigger anthropomorphic perceptions in a bottom-up manner within a few hundred 

milliseconds, and are thus harder to suppress due to their reflexive nature than nonhuman stimuli 

(Desimone & Duncan, 1995), which may contribute to the increased cognitive conflict. Alterna-

tively, it is plausible that due to human preferences for “anthropomorphic” interpretations (Epley, 

Waytz, & Cacioppo, 2007), the activation of “nonhuman” interpretations of observed stimuli 

might be delayed (McMains & Kastner, 2011) and in turn may delay conflict resolution (Chatto-
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padhyay & MacDorman, 2016; MacDorman & Chattopadhyay, 2016; Saygin, Chaminade, Ishi-

guro, Driver, & Frith, 2012). It cannot be excluded, however, that increased cognitive conflict 

processing for robot-human versus robot-nonhuman spectra is simply due to the fact that human 

and robot faces are more similar to each other than human and animal or human and stuffed ani-

mal faces. Third, it is possible that stimuli that are ambiguous regarding their human-likeness are 

more arousing due to negative affective reactions than stimuli that purport categorical ambigui-

ties unrelated to human-likeness and thus have a stronger impact on categorical decision making 

during mouse tracking. Although increased arousal due to negative affective reactions has been 

linked to the UV (Kätsyri et al., 2015), as well as to decreased cognitive performance (Eysenck 

& Calvo, 1992), this interpretation seems unlikely given that Ferrey and colleagues (2015) have 

shown that negative affective reactions for uncanny stimuli seem to be independent of their hu-

man-likeness.  

In terms of the location of the category boundaries, the current results show that although 

maximal cognitive conflict occurred around each spectrum’s category boundary, the location of 

this boundary varied as a function of target agent (i.e., human vs. animal vs. stuffed animal) such 

that it was shifted towards the end of the spectrum that contained stimuli that were alive, human, 

or similar to the participant. Please note that this shift of the location of maximal cognitive con-

flict processing could be caused by one (or multiple) separate facial feature(s) (i.e., feature-based 

/ quantitative explanation; compatible with the perceptual mismatch hypothesis) as opposed to 

the face as a whole (i.e., category-based / qualitative explanation; compatible with the categorical 

perception hypothesis). The observation that this rightward bias is most pronounced for alive, 

human, or generally “similar to self” stimuli is in line with behavioral data from previous studies 

using human-nonhuman spectra (Cheetham et al., 2011; Looser & Wheatley, 2010b; Martini, 
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Buzzell, & Wiese, 2015), as well as neurophysiological data from primate studies (Sigala et al., 

2011) showing preferential processing of “ingroup” stimuli. According to Sigala and colleagues 

(2011), this shift may reflect visual expertise for members of one’s own species and be a signa-

ture of greater brain resources assigned to the processing of privileged categories (i.e., can serve 

as sensitive indicators of encoding strength for categories of interest). This interpretation would 

be in line with numerous studies on the “other race effect” that have shown greater perceptual 

sensitivity for face stimuli belonging to “own” versus “other” racial groups (Hugenberg et al., 

2010; for a review), as well as studies on mind perception that have shown ingroup-outgroup 

manipulations to affect categorical perception, such that category boundaries are shifted more 

strongly towards the “ingroup” end of the spectrum (e.g., same university or fan of the same 

sports team; Hackel et al., 2014). The current study adds to these findings by showing that shifts 

in category boundaries are not specific to spectra of human-likeness, but also occur for spectra of 

varying “nonhuman-likeness”. However, the current data cannot exclude that this shift is simply 

due to higher perceptual expertise of human observers for human stimuli versus animal and robot 

stimuli (in line with a perceptual expertise interpretation; see Sigala et al., 2011; Hugenberg et al., 

2010). Future studies are needed to elucidate the impact of perceptual and motivational variables 

on the categorical perception of uncanny stimuli.  

From a more applied point of view, our results suggest that robotic or virtual agents 

should be designed in the least ambiguous way possible. Interacting with unambiguous agents 

evokes the least cognitive conflict, thus drains the least cognitive resources, and consequently 

should be more pleasurable and efficient than interacting with ambiguous agents. In line with 

this suggestion, semi-realistic animated film characters were shown to be perceived as eerier and 

less likable than characters impersonated by real actors (Kätsyri, Mäkäräinen, & Takala, 2017) 
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and interacting with ambiguous agents has been linked to decreased performance  (Wiese et al., 

2019). The current results indicate that such undesirable effects, though less pronounced, should 

not only occur when interacting specifically with ambiguous human-like but when interacting 

with ambiguous agents in general. The current findings however also indicate that “human” is 

quite an exclusive category, with the category boundary shifted far to the right side of a robot-

human spectrum, making it challenging to design unambiguous humanlike agents. Thus, when-

ever specifically humanlike properties are not absolutely necessary, designing for nonhuman but 

unambiguous agents might lead to more desirable interaction outcomes than for humanlike but 

ambiguous agents.   

4 CONCLUSION 

The current experiment used mouse tracking to examine the effect of stimuli’s human-likeness 

on categorical perception and cognitive conflict processing. Results indicate that cognitive con-

flict processing is universally observed at category boundaries across morph spectra with- and 

without involvement of human agents. However, the extent of cognitive conflict processing and 

the location of category boundaries are affected by the specific nature of the spectrum. Cognitive 

conflict was higher for spectra containing versus not containing human agents, and the location 

of the category boundary was shifted towards the end of the spectrum that was more “alive”, 

“similar to self”, and “human”. While the current study empirically showed how human-likeness 

affects categorical perception, the mechanisms underlying the described modulations of cogni-

tive conflict processing and category boundary locations remain, for the most part, unexplored. 

Future studies need to address this gap in the literature by exploring whether the effect of human-

likeness on categorical perception is mainly perceptual or motivational in nature.  
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