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In social robotics, the term Uncanny Valley describes the phenomenon that linear increases in 

human-likeness of an agent do not entail an equally linear increase in favorable reactions towards 

that agent. Instead, a pronounced dip or ‘valley’ at around 70% human-likeness emerges. One 

currently popular view to explain this drop in favorable reactions is delivered by the Categorical 

Perception Hypothesis. It is suggested that categorization of agents with mixed human and non-

human features is associated with additional cognitive costs and that these costs are the cause of 

the Uncanny Valley. However, the nature of the cognitive costs is still matter of debate. The cur-

rent study explores whether the cognitive costs associated with stimulus categorization around the 

Uncanny Valley could be due to cognitive conflict as evoked by simultaneous activation of two 

categories. Using the mouse tracking technique, we show that cognitive conflict indeed peaks 

around the Uncanny Valley region of human-likeness. Our findings lay the foundation for inves-

tigating the effects of cognitive conflict on positive affect towards agents of around 70% human-

likeness, possibly leading to the unraveling of the origins of the Uncanny Valley.  

 

 

INTRODUCTION 

The Uncanny Valley (UV) hypothesis is a frequently 

discussed phenomenon in social robotics. It refers to the 

observation that human-like robotic agents are perceived 

more negatively than both completely human or less 

human-like robotic agents. In other words, human-

likeness of an agent is not linearly related with its lika-

bility but shows a pronounced dip or ‘valley’ at around 

70% human-likeness (Mori, MacDorman, & Kageki, 

2012). While there is growing empirical evidence for the 

existence of the UV (e.g. Mathur & Reichling, 2016), 

there is no consensus about its theoretical underpinnings 

(Kätsyri, Förger, Mäkäräinen, & Takala, 2015; for a re-

view). One suggestion is that very human-like but not 

perfectly human agents are likely to be confused with 

morbid or dead bodies, and are hence evaluated less fa-

vorably than less human-like or perfectly human-like 

agents (Morbidity Hypothesis; Mori et al., 2012). Anoth-

er suggestion is that the UV is caused by expectations 

about the arrangement of features on a human face or 

body, which are violated by mixed-in non-human per-

ceptual features in most artificial agents (Perceptual 

Mismatch Hypothesis; MacDorman, Green, Ho, & Koch, 

2009). Lastly, it was suggested that agents with mixed 

human and non-human features are hard to categorize 

and that additional cognitive costs associated with this 

categorization are what causes the UV (Categorical Per-

ception Hypothesis; Cheetham, Suter, & Jäncke, 2011). 

While being closely related, the categorical perception 

hypothesis attributes the UV to a resource-draining cate-

gorization process and not to more general violations of 

perceptual expectations like the perceptual-mismatch 

hypothesis does. Currently, empirical evidence favors 

the perceptual-mismatch and categorical-perception hy-

potheses over the morbidity hypothesis (Kätsyri et al., 

2015). 

The categorical-perception hypothesis is based on 

the assumption that every time we are exposed to a face-

like stimulus, we automatically ask ourselves whether 

this face represents a human or non-human being. Sup-

port for this assumption comes from evolutionary biolo-

gy, linking the human tendency to categorize to survival, 

and the failure to categorize a stimulus to negative emo-

tional responses (Burleigh & Schoenherr, 2015). Thus, 

the assumption underlying the categorical-perception 

hypothesis is that the harder it is to categorize a stimulus 

as human versus non-human, the more strongly exposure 

to this stimulus should evoke negative emotional re-

sponses.  

One way to investigate categorical perception is by 

using morphs: a picture of category A is morphed into a 

picture of another category B, resulting in a sequence of 

stimuli that gradually decrease in “A-likeness” and in-

crease in “B-likeness”. Participants then have to catego-

rize these stimuli as belonging either to category A or to 

category B. From morphing studies using “human” as 

category A and “robot” as category B, we know that per-

ception of humanness indeed follows a categorical pat-

tern, with the categorical boundary located at around 

63% humanness (Cheetham et al., 2011; Martini, Gonza-

lez, & Wiese, 2016). This means that pairs of stimuli 

straddling the boundary between human and non-human 

are easier to discriminate than equally similar pairs lo-

cated on the same side of the boundary (Cheetham et al., 



2011). It however also means that stimuli located around 

the category boundary are harder to categorize (i.e. long-

est reaction times: Mathur & Reichling, 2016), with po-

tentially negative effects on performance on tasks that 

include these stimuli due to increased cognitive load. 

These studies show that the categorical boundary for 

perceiving humanness is located in proximity to the UV. 

However, what has not been shown is whether categori-

zation difficulty indeed causes a cognitive conflict asso-

ciated with increased cognitive load. Indirect measures 

of cognitive conflict (i.e., reaction times) were not able 

to provide evidence that categorizing agents falling in 

the UV induce cognitive conflicts (Mathur & Reichling, 

2016). However, while reaction times provide good es-

timates for the general difficulty of a task, they are not 

able to directly capture whether or not task performance 

is associated with conflict processing. A better measure 

to capture conflict processing during categorization is 

mouse tracking (e.g., Freeman & Ambady, 2010). The 

method allows assessments of cognitive conflict pro-

cessing via three different variables: area under the curve 

(AUC), maximum perpendicular deviation (MD), and 

the number of reversals of direction along the axis of 

decision (x-flips). All three variables are based on the 

trajectories of a mouse cursor that is used to categorize a 

stimulus. The variables are explained in detail in Free-

man & Ambady (2010). For a brief explanation of x-

flips, the only of these variables used in the current pa-

per, see the section Task and Mouse-tracking. 

The current study explores whether stimulus catego-

rization leads to heightened cognitive conflict for agents 

falling in the UV. Our analysis focuses on x-flips, as 

they are the most reliable measure of stability or instabil-

ity of category activation dynamics (Freeman & John-

son, 2016), and hence the most direct measure of cogni-

tive conflict as evoked by resource-draining categoriza-

tion processing. We expect to find the strongest cogni-

tive conflict processing in the ultimate proximity of the 

UV. In particular, we expect to find a higher number of 

x-flips for agents falling in the UV compared to agents 

that are located further away from the UV on the morph 

spectrum. In addition, we explore whether individual 

tendencies to treat non-human agents as human-like (i.e., 

anthropomorphism; Epley, Waytz, & Cacioppo, 2007 ; 

for a review) modulates the degree of cognitive conflict 

agents falling in the UV induce. The hypothesis is that 

participants with a high tendency to anthropomorphize 

should be more willing to treat a wide range of stimuli as 

human and therefore should show a less pronounced 

cognitive conflict. Individual tendencies to treat non-

human agents as human-like are measured using the 

IDAQ questionnaire (i.e., Individual Differences in An-

thropomorphism Questionnaire; Waytz, Cacioppo, & 

Epley, 2010).  

METHODS & MATERIALS 

Participants 

15 students (2 male; M = 20.9 years, SD = 2.9, range: 

18-28) from George Mason University participated in 

this study in partial fulfillment of a course requirement. 

All participants reported English language proficiency 

and normal or corrected-to-normal visual acuity. The 

experimental session took twenty minutes and was ap-

proved by the local Institutional Review Board.    

Stimuli 

We created nine different robot-human spectra using the 

morphing software FantaMorph, each consisting of pic-

tures set apart by 5% morphing steps, resulting in 21 

stimuli for each spectrum (see Figure 1 for an example 

spectrum) or a total of 189 stimuli. Each spectrum was 

based on one photograph of the face of a unique human 

and one photograph of the face of a unique robot. Robot 

photographs were obtained from Mathur and Reichling 

(2016), and followed-up by a Google image search. Only 

photographs from robots with human-like faces (i.e., 

having eyes and nose) were included in the morph spec-

tra. After deciding on the robot photographs, we 

matched them on apparent gender, head orientation, and 

facial features with a photograph from the MUCT hu-

man face database (Milborrow, Morkel, & Nicolls, 

2010). All pictures were cropped to the same aspect ratio 

and rescaled to 450 x 450 pixels. 

 

 
 

Figure 1. Stimuli:  Example of a robot-human spectrum. A robot image 

(top left) was morphed into a human image (bottom right) in steps of 5%, 

resulting in a set of 21 stimuli per spectrum.  

Task and Mouse-tracking 

Participants were asked to categorize the morph images 

as human versus non-human (one picture at a time; order 

randomized throughout the experiment). To do so, par-

ticipants had to click a start button located in the bottom 

center of the screen to make the image appear, and then 

move the mouse cursor from the bottom center of the 



screen to the respective answer box (human versus non-

human); see Figure 2. Clicking the chosen answer box 

concluded the trial, which was marked by a blank screen 

presented for 1000 ms (i.e., inter trial interval, ITI). The 

answer boxes were always shown from the beginning of 

a trial, while the agent image appeared after the start but-

ton was pressed to assure that participants started with 

mouse movement right after image presentation.  

Cognitive conflict processing was recorded via 

mouse movements (Freeman & Ambady, 2010), in par-

ticular x-flips (i.e., number of reversals of direction 

along the axis of decision; see red circles in Figure 2). 

X-flips have been shown to be the most reliable measure 

of stability or instability of category activation dynamics 

(Freeman & Johnson, 2016). In our setup, the axis of 

decision is the horizontal x-axis since the participant’s 

categorization process (non-human = left; human = 

right) is based on the horizontal position of the mouse 

cursor; see Figure 2.  

Design and Procedure 

The experiment followed a one-factorial design with the 

within-participants factor physical humanness. Human-

ness was manipulated on a spectrum from robot-like to 

human-like in steps of 5%, resulting in a total of 21 lev-

els of humanness per humanness spectrum. To increase 

external validity and to minimize artifacts coming from 

specific human or robot images, nine different robot-

human spectra were created. Images were presented at 

the bottom center of the screen until participants made a 

decision (human versus non-human). Each image was 

presented once per participant, with the order of the im-

ages being randomized across the experiment.  

At the beginning of the experiment, participants 

were seated in front of a computer and signed the in-

formed consent form before being instructed to decide if 

a picture is either human or non-human by clicking on 

the respective word as fast as possible. After participants 

had read the instructions, they were asked to perform 

three practice trials to familiarize themselves with the 

mouse-tracking procedure. For the practice trials, mor-

phed images were used that were not part of any of the 

experimental morph spectra. Upon completion of the 

practice trials, the main experiment began during which 

participants categorized all 189 agents as either human 

or non-human using the computer mouse. The main task 

took about 15 minutes to complete. Upon completion of 

the main experiment, participants were asked to fill out 

the IDAQ (Waytz et al., 2010), which measured the par-

ticipant’s individual inclination to attribute a mind to 

something non-human. After having completed the ques-

tionnaire, participants were informed about the purpose 

of the experiment and received their course credit before 

the session concluded.  

Analysis 

Trials with extreme reaction times deviating more than 

2.5 standard deviations from the individual mean were 

excluded from analysis, which led to an exclusion of 

0.3% of all trials. To investigate whether categorizing 

agents along the given spectra resulted in a categorical 

pattern, a three-parameter logistic function was fitted to 

the data of each participant and a one-sample t-test on 

the growth parameter was employed to test deviation 

from linearity (a procedure that has already been em-

ployed by other authors; Cheetham et al., 2011). 

 

 
 

Figure 2. Example Trial: After pressing the start button, an agent image 

appeared on the screen (center, bottom) and participants were asked to catego-
rize the image as either human or non-human by moving their mouse cursor to 

one of the two answer boxed (top left and right). The blue line shows an ex-

ample trajectory. The red circles represent the locations of abrupt changes in 
the horizontal direction (x-flips), with higher number of x-flips indicating 

higher cognitive conflict processing.  

 

To investigate whether categorizing agents falling in 

the UV resulted in stronger conflicts than categorizing 

agents located further away from the UV, a two-step 

procedure was employed: first, a one-factorial repeated 

measures ANOVA with the factor physical humanness 

and the dependent variable number of x-flips (as a meas-

ure of cognitive conflict) was used to investigate if phys-

ical human-likeness affected cognitive conflict pro-

cessing. Second, a correlational analysis on individual 

categorical boundaries and individual maxima of cogni-

tive conflict was conducted to support our hypothesis 

that maximal cognitive conflict tends to occur around 

each participant’s categorical boundary. Lastly, to ex-

plore the effect of trait anthropomorphism, we conducted 

a median split on the IDAQ scores and plotted the result-

ing classification function for both groups. Testing dif-

ferences between low and high anthropomorphism 



groups with inferential statistics is planned after dou-

bling our sample size.   

RESULTS  

Participants exhibited a step-like, in contrast to a linear, 

function when categorizing robot-human morphs into 

non-human or human as shown by a one-sample t-test on 

the growth rate parameters of the individual three-

parameter logistic fits (t(14) = 6.94, p < 0.001); see Fig-

ure 3A. Since the fitting procedure failed due to a non-

sigmoid shape of the data for one participant, we used a 

growth rate of 0 for this participant. 
 

 
 

Figure 3. Categorization and Cognitive Conflict: (A) Categorization data. 

Grand average empirical data are depicted in black; a linear model fit is 

shown in red, a logistic fit in blue. The categorical boundary (i.e., the value of 
physical humanness associated with the steepest change in classified human-

ness) is depicted by a change in background brightness. Error bars depict 

standard errors. (B) X-flip data. Physical humanness alters cognitive conflict. 
The highest cognitive conflict is measured around the categorical boundary. 

Error bars depict standard errors. (C) Relation between individual categorical 

boundaries and cognitive conflict maxima. The higher the categorical bounda-
ry is on the spectrum of physical humanness, the higher the cognitive conflict 

maximum (measured by individual x-flip maxima); red line shows linear fit.  
 

Physical humanness altered cognitive conflict as 

shown by a one-factorial repeated-measures ANOVA 

(F(20, 280) = 2.17, p = .003), with the factor physical 

humanness and the dependent variable number of x-

flips; see Figure 3B. As hypothesized, the instability is, 

at least descriptively, the greatest in proximity of the 

uncanny valley (i.e. around 70%, compare to e.g., 

Cheetham, Pavlovic, Jordan, Suter, & Jancke, 2013). To 

further test this hypothesis, we extracted the categorical 

boundary as well as the point of maximal cognitive con-

flict and ran a correlational analysis; see Figure 3C. We 

defined the categorical boundary as the point in classi-

fied humanness where the sigmoidal fit reaches its max-

imal slope (compare Figure 3A for the grand average 

categorical boundary). The point of maximal cognitive 

conflict is defined as the point in classified humanness 

where the highest categorization instability as measured 

by x-flips was exhibited. Since the categorical boundary 

relies on a sigmoidal fit, the one subject that did not ex-

hibit a sigmoidal fit was excluded from this particular 

analysis. The correlational analysis supported our hy-

pothesis (Pearson’s r = 0.54, t(12) = 2.19, p = 0.0482). In 

conclusion, both ANOVA and correlation analysis find-

ings are in congruence with our hypothesis that the un-

canny valley represents the area of maximal cognitive 

conflict as evoked by categorization instability. 

 

 
 

Figure 4. Humanness ratings by IDAQ groups: Eight subjects in high 

IDAQ group (>= median), seven in low IDAQ group (<median). IDAQ: Indi-
vidual Differences in Anthropomorphism Questionnaire (Waytz et al., 2010). 

 

Lastly, we are reporting the relation between the in-

clination to anthropomorphize as measured by the IDAQ 

and the humanness ratings; see Figure 4. Descriptively, 

from looking at the data, we suggest that the categorical 

boundary of individuals with high IDAQ scores is both 

shifted to the left and less pronounced (i.e., less steep) 



when compared to individuals with low IDAQ scores, as 

would be expected. We are planning on testing this hy-

pothesis with inferential statistics after increasing sample 

size. 

DISCUSSION 

The current study explored whether the cognitive costs 

associated with stimulus categorization around the Un-

canny Valley could be due to cognitive conflict as 

evoked by simultaneous activation of two categories. 

Using the mouse tracking technique, we showed that 

cognitive conflict indeed peaks around the Uncanny Val-

ley region of human-likeness. A preliminary analysis 

additionally suggests that participants with high inclina-

tion to anthropomorphize show a less pronounced cate-

gorical boundary and thus less cognitive conflict than 

participants with low inclination to anthropomorphize.  

Our results are in line with the hypothesis that the 

UV is caused by difficulties categorizing agents of 

around 70% human-likeness (Cheetham et al., 2011). 

This study is to our knowledge the first to directly meas-

ure the cognitive conflict resulting from an ambiguous 

categorization process, relying on the mouse tracking 

technique instead of on more indirect measures like reac-

tion time. In other words, it was hitherto not clear if the 

categorical boundary observed in proximity of the un-

canny valley (Cheetham et al., 2011) is accompanied by 

an increase in cognitive conflict.  

While originally tailored to further investigate the 

categorical perception hypothesis, the current research is 

also well consistent with the perceptual mismatch hy-

pothesis. Thus, it is not clear if the reported cognitive 

conflict maxima are indeed caused by high-level cate-

gorical processing or, as the perceptual mismatch hy-

pothesis would claim, by lower-level effects due to co-

occurring unexpected compositions of artificial and hu-

man-like facial features. Relatedly, the cognitive conflict 

maxima might also capture problems with fluent stimu-

lus processing. Low processing fluency has shown to be 

related with negative evaluations of the respective stimu-

lus (Winkielman et al., 2003) and could thus be similarly 

related to the negative evaluations in the UV. 

In all cases however, the reported findings lay the 

foundation for investigating the effects of cognitive con-

flict on affective evaluations of agents at around 70% 

human-likeness. It thus is to be researched if the Uncan-

ny Valley might be originating from negative emotions 

as evoked by cognitive conflict. 
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