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ABSTRACT 36 

Objective: Human problem solvers possess the ability to outsource parts of their mental pro-37 

cessing onto cognitive “helpers” (cognitive offloading). However, suboptimal decisions regarding 38 

which helper to recruit for which task occur frequently. Here, we investigate if understanding and 39 

adjusting a specific subcomponent of mental models –beliefs about task-specific expertise – re-40 

garding these helpers could provide a comparatively easy way to improve offloading decisions. 41 

Background: Mental models afford storage of beliefs about a helper that can be retrieved when 42 

needed. Methods: Arithmetic and social problems were solved by 192 participants. Participants 43 

could – in addition to solving a task on their own – offload cognitive processing onto a human, a 44 

robot, or one of two smartphone apps. These helpers were introduced with either task-specific 45 

(e.g., stating that an app would use machine learning to “recognize faces” and “read emotions”) 46 

or task-unspecific (e.g., stating that an app was built for solving “complex cognitive tasks”) de-47 

scriptions of their expertise. Results: Providing task-specific expertise information heavily al-48 

tered offloading behavior for apps but much less so for humans or robots. This suggests 1) strong 49 

pre-existing mental models of human and robot helpers and 2) a strong impact of mental model 50 

adjustment for novel helpers like unfamiliar smartphone apps. Conclusion: Creating and refining 51 

mental models is an easy approach to adjust offloading preferences and thus improve interactions 52 

with cognitive environments. Application: To efficiently work in environments in which prob-53 

lem solving includes consulting other people or cognitive tools (“helpers”), accurate mental mod-54 

els –especially regarding task-relevant expertise– are a crucial prerequisite. 55 

Keywords: Cognitive Offloading; Mental Models; Distributed Cognition; Extended Cognition; 56 

Metacognition; Strategy Selection   57 
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INTRODUCTION 58 

Primer: cognitive environments 59 

Technological advances related to computer hardware (e.g., the steady increase in processing 60 

power; Schaller, 1997), software and algorithms (e.g., modeling uncertainty in probabilistic pro-61 

gramming; Ghahramani, 2015), and embodiment (e.g., the creation of intelligent virtual agents; 62 

Cassell et al., 2000; or improving the social component of robot agents; Wiese et al., 2017) con-63 

tribute to a world with a plethora of opportunities to support our brain’s limited abilities (i.e., 64 

cognitive offloading; Risko & Gilbert, 2016). These advances have the potential to “supersize our 65 

minds” (Clark, 2011). However, the continuously changing landscape of these opportunities also 66 

comes with a challenge: how do we decide which of the opportunities to take? When leaving for 67 

dinner with a friend, would we (1) navigate on our own or seek support by relying on (2) our 68 

friend’s navigational ability, (3) a smartphone app, or (4) a robot companion? Current evidence 69 

suggests that we frequently make biased and suboptimal choices when seeking to support our 70 

brain (Gilbert et al., 2019; Jérémy Virgo et al., 2017; Risko & Dunn, 2015; Weis & Wiese, 71 

2019a). Consequently, we are in need of interventions that inform unbiased choices (cf. Risko & 72 

Gilbert, 2016), which requires that we improve our understanding of the underlying decision 73 

mechanisms. The current manuscript caters to these needs by exploring how mental models about 74 

our fellow humans, smartphone apps, and embodied robots (i.e., cognitive helpers) influence of-75 

floading choice and how these models can be updated so as to readjust suboptimal choice behav-76 

ior.   77 

 78 

Primer: mental models of cognitive environments 79 

A problem solver’s mental model of a cognitive helper reflects “his or her beliefs about the [...] 80 

system, acquired either through observation, instruction or inference” (Norman, 2014, p. 12). 81 
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Mental models enable problem solvers to retrieve these beliefs from their memory such that the 82 

beliefs can subsequently guide interaction behavior like cognitive offloading (also known as in-83 

formation-based metacognition; for a review, see Koriat & Levy-Sadot, 2000). It should be noted 84 

that mental models have been crucial for seeking cognitive support long before the advent of hu-85 

man-computer-interaction: when interacting with fellow humans. For example, when asked to 86 

remember topic-specific information in concert with another person, social problem solvers will 87 

remember less information when they believe that the other person is an expert in the respective 88 

topic (Wegner, 1987). The dynamic way humans use mental models to distribute information 89 

across the minds of other group members (transactive memory; Wegner, 1987) has long been at 90 

the core of human society.  91 

What has changed in recent decades, however, is the variety of non-human entities that 92 

can be accessed for such cognitive support. For example, humans can nowadays access internet-93 

based rather than fellow-human-based information (Clowes, 2013; Wegner & Ward, 2013). In 94 

general, humans are increasingly inter-connected with computers that can enhance their cognitive 95 

abilities way beyond information-seeking (Clark, 2004, 2011) and consequently are in need of 96 

mechanisms to decide when to rely on computer-based processing. The straight-forward assump-97 

tion that we adopt in the present paper is that this decision process can be informed by the same 98 

mental-model-based mechanism that holds when interacting with humans rather than computers. 99 

That beliefs are relevant for a human’s decision to seek cognitive support is highly likely. For 100 

example, when a user’s mental model of a calculator’s CLEAR button includes beliefs that sug-101 

gest low reliability, the user will press the button multiple times rather than only once  (Norman, 102 

2014). Similarly, beliefs about an input device’s reliability have been shown to alter use frequen-103 

cy independently of actual reliability (Weis & Wiese, 2019a).  104 

 105 
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Current study: do mental models shape how cognitive environments are used? 106 

In the present study, we therefore argue that, and investigate if, understanding and adjust-107 

ing mental models of cognitive environments could provide a comparatively easy way to guide 108 

and improve cognitive support seeking (i.e., cognitive offloading) behavior
 1

. What is known is 109 

that if helpful information regarding the cognitive environment is missing, it is likely that pre-110 

existing mental models are accessed to guide offloading choice. For example, when asked to 111 

solve arithmetic and social problems, humans preferred to seek advice from computers and robots 112 

when solving arithmetic and advice from humans when solving social problems (Hertz & Wiese, 113 

2019). Although not explicitly investigated in that study, we assume these task-specific prefer-114 

ences to have emerged due to stereotypical beliefs about the expertise of specific human and ro-115 

botic entities that are part of an individual’s mental model of the generic entity (e.g., “all humans 116 

are social beings”, “all robots can rely on precise computers to calculate”, etc.). In a similar vein, 117 

the way humans cognitively interact with other agents has been shown to depend on whether they 118 

believe that the agent possessed a mind (Wiese et al., 2012; Wykowska et al., 2014), which likely 119 

has extensive consequences for how humans structure their mental model of that agent.  120 

To put the importance of mental models for cognitive support seeking to a test, we used a 121 

novel computer-based paradigm in which participants can either solve arithmetic or social prob-122 

lems on their own or offload it onto a human, a robot, or one of two smartphone applications. 123 

Note that novel smartphone applications are, just like robots, created by humans and, also just 124 

like robots, likely perceived superior to humans in analytical tasks (compare to Hertz & Wiese, 125 

2019). However, they are not embodied, less present in the news, and usually more specialized in 126 

                                                 

1
 Please note that other factors like performance (Risko et al., 2014; Walsh & Anderson, 2009; Weis & Wiese, 

2019b), effort (Ballard et al., 1997; Kool et al., 2010), or trust (de Visser et al., 2012, 2016) likely also influence 

cognitive interactions with humans, computers, and robots, but are addressed in the current paper only insofar as they 

might be mediated by an associated belief system (i.e., a mental model). 
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a specific domain (e.g., entertainment or finance) than their embodied counterparts. We therefore 127 

assume that our participants have little to none pre-existing mental models regarding novel 128 

smartphone apps.  129 

Before engaging in the tasks, participants were to read short texts that were supposed to 130 

alter the participants’ mental models of these cognitive helpers. The texts were – inspired by our 131 

interpretation of the data provided by Hertz and Wiese (2019) – supposed to specifically alter 132 

beliefs about task-specific expertise. In other words, we assume expertise beliefs to be a subcom-133 

ponent of a mental model (of a cognitive helper) that has particularly high relevance for cognitive 134 

offloading choice. Therefore, we designed texts that could either provide task-unspecific (e.g.., 135 

the human is called “Michael” and studies English) or provide tasks-specific (e.g., the human is 136 

called “Michael” and is a social worker who is used to read emotions in people’s faces on an eve-137 

ryday basis) information about the helpers’ cognitive expertise. 138 

 139 

Current study: hypotheses 140 

H1-1. Based on the human advice seeking behavior reported by Hertz and Wiese (2019) 141 

and in absence of information about a cognitive helper’s task-specific cognitive expertise, 142 

we assume that our participants’ offloading preferences are based on pre-existing generic 143 

mental models of the cognitive helpers available in a particular situation. Thus, when fa-144 

miliar cognitive helper types like a human or an embodied robot are available, we assume 145 

our participants to make use of these generic mental models. Expertise beliefs stored in 146 

the generic model are then accessed and participants consequently prefer offloading 147 

arithmetic tasks to the robot and social tasks to the human even when no information 148 

about the cognitive helpers’ expertise is provided. 149 
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H1-2. If that mechanism was true, providing specific expertise information that is con-150 

sistent with pre-existing beliefs (i.e., that suggest arithmetic expertise for the robot and 151 

social expertise for the human) should hardly change these offloading preferences. 152 

H2-1. Analogously, if pre-existing generic mental models do not differ, no differences in 153 

offloading preference should be exhibited. To test this hypothesis, we introduced two 154 

novel smartphone apps in a task-unspecific manner, observed offloading patterns for both 155 

arithmetic and social task, and expected no offloading preferences for any of the apps in 156 

either of the tasks.  157 

H2-2. However, when presenting information that suggests differential task-specific ex-158 

pertise of both apps, clear offloading preferences should emerge again. In other words, we 159 

hypothesize that offloading preferences similar to the ones existing for humans and robots 160 

can be established for novel cognitive environments solely by adjusting the environment’s 161 

mental model. Such a finding would suggest that human problem solvers use the same 162 

principles for deciding whether to offload cognition onto embodied agents like humans or 163 

robots, or onto non-embodied entities like smartphone apps.  164 

Hypotheses have been preregistered. The preregistration can be accessed using the OSF reposito-165 

ry associated with this manuscript (osf.io/s93tv)
2
.  166 

 167 

  168 

                                                 

2
 Note that factor names and hypotheses are phrased differently in the present manuscript to improve readability. The 

factor “External Helpers” is now called “Environment”, the factor “Metacognitive Priors” is now called “Mental 

Model”. H1 has been split into H1-1 and H1-2 in the present manuscript, H2 has been split into H2-1 and H2-2.  
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METHODS & MATERIALS 169 

Participants 170 

In total, 323 participants were recruited via Amazon Mechanical Turk (www.mturk.com). Six 171 

participants were excluded because they took less than 10 or more than 45 minutes for a study 172 

that was designed to take 20 minutes. Additionally, 121 participants were excluded because they 173 

failed the manipulation check (for details on the manipulation check, see last paragraph of section 174 

Procedure) at the end of the study. We acknowledge that the exclusion rate is substantial but re-175 

tained the manipulation check as exclusion criterion because it (1) was determined a priori and 176 

(2) is crucial that our participants did attend to and remembered the information given to them as 177 

this information constitutes our main manipulation (i.e., the Mental Model factor, see Figure 1) 178 

and we assume that some online participants do read texts only casually. Each participant that 179 

spent on average less than one second for each of the Perceived Competence ratings was also 180 

excluded (e.g., answered the question “How proficient do you think Michael is in solving the Dot 181 

task?” on a 21-point sliding scale in less than one second). This led to an additional exclusion of 182 

four participants, resulting in a final sample size of 192 participants (121 females, mean age: 183 

40.1
3
, age range: 21 – 75). The rigorous and extensive exclusion of participants was necessary to 184 

avoid biased results that underestimate the actual effects due to inattentiveness. All participants 185 

gave informed consent prior to participating. The study took on average about 20 minutes to 186 

complete and participants received $ 0.50 for their participation. This research complied with the 187 

tenets of the Declaration of Helsinki was approved by the Institutional Review Board at George 188 

Mason University. Informed consent was obtained from each participant prior to participation.  189 

                                                 

3 Age was comparable between groups: Mean age was 39.1 years for the Task-unspecific Agent and Task-specific App Expertise 

Beliefs Mental Model group (for details on the factor, see section Design) and 41.3 years for the Task-specific Agent and Task-

unspecific App Expertise Beliefs Mental Model group.  



Mental Modals and Offloading Preferences 

 

9 

 190 

Figure 1: Instructions for the Mental Model Factor. Instructions as shown in the Task-unspecific Agent Expertise Beliefs and 191 

Task-specific App Expertise Beliefs (a) and the Task-specific Agent Expertise Beliefs and Task-unspecific App Expertise Beliefs 192 

(b) Mental Model conditions. Instructions are either suggesting task-unspecific cognitive skill or suggesting expertise specific to 193 

either arithmetic or social tasks; see Design for details.    194 



Mental Modals and Offloading Preferences 

 

10 

Apparatus 195 

Participants took the survey online on their own devices. The experiment was presented using the 196 

psychological testing software Inquisit (version 5; Millisecond Software, www.millisecond.com). 197 

Stimulus presentation scaled with the size of the participant’s screen.  198 

 199 

Stimuli 200 

In total, 72 stimuli were used, 36 for the “eye task” and 36 for the “dot task” (see section Tasks). 201 

For the eye task, stimuli were extracted from the Reading the Mind in the Eyes test (Baron-Cohen 202 

et al., 2001). For the dot task, nine stimuli were custom-made using a common image editing 203 

software. All nine stimuli consisted of either nineteen or twenty dots and the following numeric 204 

difference between black and gray dots: -4, -3, -2, -1, 0, 1, 2, 3, 4. The remaining 27 dot task 205 

stimuli were created by mirroring the existing stimuli on the horizontal axis and then further mir-206 

roring both mirrored and original stimuli on the vertical axis. In addition, one unique practice 207 

stimulus was used for both eye and dot task that was not used in the main experiment. All stimuli 208 

can be accessed using the linked OSF repository.  209 

 210 

Tasks 211 

Similar to the paradigm used by Hertz and Wiese (2019), participants engaged in two tasks: an 212 

arithmetic (“dot task”) and a social (“eye task”) one. In the social task, participants were seeing 213 

pictures of human eyes and asked to “select which word best describes what the person in the 214 

picture is thinking or feeling” (Reading the Mind in the Eyes Task; Baron-Cohen et al., 2001). In 215 

the arithmetic task, participants were seeing black and gray dots and were to count and report the 216 

difference between the count of black and gray dots (for details on the dot stimuli, see Stimuli). 217 

Participants were asked to solve the tasks as accurately as possible. In both tasks, participants had 218 
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six answer options. Participants could either choose to answer the question on their own (four 219 

options) or they could offload the cognitive task to one of two apps or agents (two options). Par-220 

ticipants were instructed that all apps and agents that they can choose from had already been 221 

completing the eye and the dot task in our lab and that by clicking an app or an agent they would 222 

thereby chose the answer that the app or agent had given when solving the task in our lab. 223 

For example, participants might see a stimulus with nine black dots and ten gray dots and 224 

could select to solve the task on their own by clicking one of the four numeric answer options 225 

(e.g., +1, 0, +2, and -1; see Figure 2, top row). Participants could also choose to offload the task 226 

to one of two agents instead of clicking one of the numeric answer options. For example, in the 227 

top row of Figure 2, participants were able to offload the task to the robot Meka (center top) or 228 

the human Michael (center bottom). In the figure, the participant chose to offload the task to Me-229 

ka and is provided with the answer that Meka selected (“Meka chose for you: -1”).  230 

 231 

Design 232 

Three factors were employed in the current study. First, participants engaged in two different 233 

tasks (Factor: Task Type, Levels: Arithmetic, Social). Second, participants were able to offload 234 

the task-related cognitive processing onto different entities. In one of two experimental blocks, 235 

participants were able to offload cognitive processing (Factor: Cognitive Environment, Levels: 236 

Agents, Apps) onto the human Michael and the robot Meka (i.e., level Agents). In the other exper-237 

imental block, participants were able to offload cognitive processing onto a smartphone app 238 

called Omnilearn and another smartphone app called Pattern Analytics (i.e., level Apps). Third 239 

and lastly, participants had to read through different texts introducing the human, the robot, and 240 
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the smartphone apps (Factor: Mental Model
4
, Levels: Task-unspecific Agent and Task-specific 241 

App Expertise Beliefs, Task-specific Agent and Task-unspecific App Expertise Beliefs; Figure 1).  242 

To establish or update mental models of apps and agents, each participant was provided with 243 

text-based information describing their cognitive abilities (i.e., Factor: Mental Model). Providing 244 

text-based information should be sufficient to establish or update mental models given that men-245 

tal models represent “beliefs about [a] [...] system [that are] acquired either through observation, 246 

instruction or inference” (Norman, 2014, p. 12). Subsequently, participants are able to access the 247 

established mental models and recall the associated beliefs to guide their interactive behavior 248 

(also known as information-based metacognition; for a review, see Koriat & Levy-Sadot, 2000). 249 

Specifically, the provided information could either describe the helper as having task-unspecific 250 

or task-specific cognitive abilities in either the arithmetic or the social domain.  251 

Whether the provided information described the helpers as having task-specific or more gen-252 

eral (task-unspecific) cognitive abilities differed between blocks, and participants always engaged 253 

in one block with helpers that were described as having task-specific and one block with helpers 254 

that were described as having task-unspecific cognitive abilities. Which description type (task-255 

specific or task-unspecific) was paired with which helpers (i.e., with “Agents” or “Apps”) was 256 

randomly assigned and which helpers were available differed between blocks. Participants thus 257 

belonged to one of two Mental Model groups: 258 

(1) Task-unspecific Agent and Task-specific App Expertise Beliefs: In the Agents Cognitive 259 

Environment block, the human was introduced as an undergrad majoring in English and 260 

the robot was introduced as being built for learning and answering complex cognitive 261 

                                                 

4
 We want to acknowledge a Reviewer’s suggestion to name the factor “Information provided about the Helper” 

because it would more closely describe what we manipulated. In other words, a mental model cannot be directly 

manipulated but is only manipulated via the provided information. Although we appreciate the suggestion and think 

the proposed name would be more precise we decided to keep the current factor name because of its relative brevity 

and the theoretical framework associated with it.  
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tasks (task-unspecific cognitive abilities). In the Apps Cognitive Environment block, Om-262 

nilearn was introduced as an app built for recognizing familiar faces and reading emo-263 

tions, and Pattern Analytics was introduced as an app built for helping children learn math 264 

in real-life surroundings by being able to count and provide feedback about the amount of 265 

marbles lying in front of the child (task-specific cognitive abilities). The exact wording 266 

can be inspected in Figure 1a.  267 

(2) Task-specific Agent and Task-unspecific App Expertise Beliefs. In the Agents Cognitive 268 

Environment block, the human was introduced as an undergrad majoring in Social Work 269 

and is proficient in reading human emotions and the robot was introduced as being built 270 

for helping children learn math in real-life surroundings by being able to count and pro-271 

vide feedback about the amount of marbles lying in front of the child (task-specific cogni-272 

tive abilities). In the Apps Cognitive Environment block, both Omnilearn and Pattern An-273 

alytics were introduced as apps built to learn and answer complex cognitive tasks. The 274 

exact wording can be inspected in Figure 1b.  275 

Block order (i.e., whether the Agents or Apps Cognitive Environment was encountered first) 276 

was randomized.  277 

 278 

Procedure 279 

After clicking a link provided on MTurk, participants were to read a consent form. If a participant 280 

gave consent, general instructions concerning the two task types were given. One task required 281 

the participant to answer arithmetic questions; the other one required to answer social questions 282 

(for details, see section Tasks). Importantly, participants could either choose to answer the ques-283 

tion on their own (four options) or they could offload the cognitive task to one of two apps or 284 

agents (two options). Participants then completed one practice trial for each task with four answer 285 
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options, i.e. without the possibility to get cognitive support from a human, robot, or an app. Only 286 

then participants were introduced to the possibility to offload their cognitive processing to their 287 

cognitive environment, i.e. onto a human, a robot, or one of two apps. Participants then completed 288 

one trial for each task with only two answer options, a human and an app. A unique human and 289 

app that did not appear in the main experiment were used for that purpose. Right before the be-290 

ginning of the main experiment, participants were explicitly instructed to “Remember: Whenever 291 

you like, you can click on some of the humans, robots, or apps to choose the answer that they 292 

gave last fall! However, keep in mind that their answer is not necessarily correct and that your 293 

task is to score as many correct answers as possible.” Prototypical trials as well as timing details 294 

are provided in Figure 2. For details on the different apps and agents, see Design. 295 

 296 
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Figure 2: Trial Sequence. At the beginning of a trial, participants had to click a square to center the mouse cursor. After clicking 297 

the square, the task-related stimulus and the answer options were shown. If a participant took longer than five seconds to pick a 298 

response, the task-related stimulus disappeared. A five second window was chosen to keep response times roughly comparable 299 

between tasks and to provide a challenging experience that encourages the use of cognitive helpers. After choosing a response, 300 

feedback was provided for two seconds. Between trials, a blank screen was shown for two seconds. Stimuli and answer options 301 

are drawn to scale; other text is not drawn to scale. Note that answer options are provided in squares of equal size and that the 302 

centers of the squares are presented at equal distance to the center of the screen for all six answer options.   303 

Participants then started one out of two experimental blocks. Both blocks consisted of the 304 

following. First, participants read a brief description of the two agents or apps that they could 305 

offload their cognitive processing to in the respective block (Mental Model manipulation; see 306 

Figure 1). Second, participants had to answer one question about each agent that ensured that 307 

they read and understood the instructions. For example, when asked "What is Michael trained 308 

in?", out of four answer options (Answering Complex Cognitive Tasks, English Language, Read-309 

ing Emotions, Counting Objects), participants would have to select “English Language” if they 310 

read the instruction for Michael provided in Figure 1a and “Social Work” if they read the in-311 

struction for Michael provided in Figure 1b. If they answered at least one of both questions in-312 

correctly, participants had to read the descriptions once more until they could provide correct 313 

answers to both questions. Third, participants were to rate the two apps’ or agents’ as well as 314 

their own abilities to perform the arithmetic and the social task on a 21-point sliding scale that 315 

closely resembled a visual analogue scale. Questions followed the following format: “How profi-316 

cient do you think ‘Meka‘/‘Michael‘/‘Omnilearn‘/‘Pattern Analytics‘ is in solving the 317 

‘Dot‘/‘Social‘ task?” The scale ranged from “Very Unproficient” on the left side to “Very Profi-318 

cient” on the right side. Fourth, participants engaged in a total of 36 trials consisting of 18 arith-319 

metic and 18 social trials (compare Figure 2). Trial order was randomized within the block and 320 

in the first block, problems were chosen randomly from the pool of 36 arithmetic and 36 social 321 
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problems. At the end of the second block, each problem had been shown exactly once. At the end 322 

of the first block, participants were allowed to take a self-paced break.  323 

After completing both experimental blocks, participants completed a brief demographic 324 

survey, rated all four agents and themselves once more in their abilities to complete the arithme-325 

tic and the social tasks, and completed a final manipulation check. For the manipulation check, 326 

participants were once more asked to select, out of four options, what each of the four agents and 327 

apps were trained in. This manipulation check allowed us to test whether participants retained the 328 

information provided in the agent and app descriptions (i.e., Mental Model manipulation; see 329 

Figure 1). Participants then were thanked for participating in the study and a unique code that 330 

participants were to enter on MTurk to receive payment was presented.   331 

 332 

Measure: offloading preference 333 

For the main analysis, offloading preference was used as dependent variable. Offloading prefer-334 

ence is defined as the difference between how frequently a participant offloaded cognitive pro-335 

cessing onto the human as compared to the robot in the Cognitive Environment Agents condition 336 

and onto Omnilearn as compared to Pattern Analytics in the Cognitive Environment Apps condi-337 

tion. Within each block, offloading preference can therefore range between -18 and 18. A value 338 

of -18 means that participants offloaded the task exclusively onto the robot (in the Cognitive En-339 

vironment Agents) or the Pattern Analytics app (in the Cognitive Environment Apps) condition. 340 

 341 

Analyses 342 

 As an omnibus test, we employed a 2 x 2 x 2 ANOVA with the within-participants factors 343 

Cognitive Environment and Task Type and the between-participants factor Mental Model. To test 344 

our specific hypotheses (see Introduction: Hypotheses), t-tests were employed. For details about 345 

the t-tests, see Results: Hypotheses-driven analyses.  346 
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RESULTS
5
 347 

To provide an overview over our participants’ problem solving behaviors, full data on how fre-348 

quently participants chose to rely on their own cognitive processing and how frequently they 349 

chose to rely on the human, the robot, or on one of the smartphone apps, is depicted in Figure 3. 350 

In the following, hypotheses-driven and explorative statistical analyses are reported.  351 

 352 

 353 

                                                 

5 The associated R analysis script and data files can be freely accessed online through the Open Science Framework at 

osf.io/s93tv. 
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Figure 3: Responses. Response counts for the Task-specific Agent and Task-unspecific App Expertise Beliefs (a) and the Task-354 

unspecific Agent and Task-specific App Expertise Beliefs (b) Mental Modal conditions. Each box summarizes data of the 18 trials 355 

per participant in the respective condition. The x-axis specifies whether participants solved the task on their own or chose to 356 

offload to the available apps or agents. Response counts can thus range from 0 (response chosen in 0% of trials) to 18 (chosen in 357 

100% of trials) for each answer option and sum up to 18 within each box. Black diamonds represent means. Error bars represent 358 

95% confidence intervals. Gray diamonds represent raw data points. Gray shapes represent violin plots as implemented by 359 

ggplot2 (Wickham, 2016). The numeric values depicted in this plot can be inspected in Table S1 in the Supplemental Material.  360 

 361 

Hypotheses-driven analyses 362 

In the following, results of the omnibus ANOVA are reported to allow the reader to inspect par-363 

ticipants’ response patterns and to deduce whether the hypothesis-driven t-tests are backed by 364 

significant interactions in the data set as a whole. Subsequently, hypotheses-driven analyses are 365 

reported.  366 

(1) Omnibus ANOVA. Confirming our expectations, the omnibus test indicated that offload-367 

ing preference was altered as a function of the three-way-interaction between Mental 368 

Model, Cognitive Environment, and Task Type (F(1, 190) = 69.4, p < .0001, ηG² = .10; 369 

Figure 4). Recall that offloading preference is defined as the difference between how fre-370 

quently the human agent was chosen in comparison to the robot agent (in the Cognitive 371 

Environment Agents condition) or how frequently Omnilearn was chosen in comparison 372 

to Pattern Analytics (in the Cognitive Environment Apps condition). In addition, Task 373 

Type and Cognitive Environment interacted in their influence on offloading difference 374 

(F(1, 190) = 43.4, p < .0001, ηG² = .06) whereas the interaction effects of Mental Model 375 

and Cognitive Environment (F(1, 190) = 1.0, p = .3077, ηG² < .01) and Mental Model and 376 

Task Type (F(1, 190) = 2.1, p = .1482, ηG² < .01) were not significant at a .05 alpha level. 377 

All three main effects, i.e. Cognitive Environment (F(1, 190) = 30.0, p < .0001, ηG² = 378 

.02), Mental Model (F(1, 190) = 16.0, p < .0001, ηG² = .01), and Task Type (F(1, 190) = 379 
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211.2, p < .0001, ηG² = .33) were significant. The ANOVA results suggest that human 380 

problem solvers prefer specific environments (i.e., specific apps, humans, robots) for 381 

solving specific tasks (i.e., arithmetic or social tasks) and that updating a mental model 382 

with task-specific information has a different effect for different environments.  383 

(2) Hypotheses H1-1 and H1-2. Specifically, in the Agents Cognitive Environment, partici-384 

pants changed their offloading preferences based on the Task Type for both Mental Model 385 

conditions: Participants showed a higher preference for the human agent for the Social in 386 

comparison to the Arithmetic Task Type for both the Task-specific Agent and Task-387 

unspecific App Expertise Beliefs (t(88) = 13.9, p < .0001; MSocial – MArithmetic = 17.5; in line 388 

with H1-1) and the Task-unspecific Agent and Task-specific App Expertise Beliefs (t(102) 389 

= 9.00, p < .0001; MSocial – MArithmetic = 10.1; in line with H1-1) Mental Model conditions. 390 

Mental Model did not alter offloading preferences for the Arithmetic Task Type (t(190) = 391 

1.56, p = .1202; MTask-specific Agent and Task-unspecific App Expertise Beliefs = -10.2, MTask-unspecific Agent and 392 

Task-specific App Expertise Beliefs = -8.4; in line with H1-2) in the Agents Cognitive Environment 393 

condition. Mental Model however did alter offloading preferences for the Social Task 394 

Type (t(190) = 6.01, p < .0001; MTask-specific Agent and Task-unspecific App Expertise Beliefs = 7.4, MTask-395 

unspecific Agent and Task-specific App Expertise Beliefs = 1.7; contradicting H1-2). In sum, in the Agents 396 

Cognitive Environment, our human problem solvers showed task-specific offloading 397 

preferences for different agents; Figure 4a. In alignment with H1-1, these offloading 398 

preferences existed even when only task-unspecific metacognitive information was pro-399 

vided. In alignment with H1-2, providing information describing the human as highly ca-400 

pable of reading emotions and the robot as highly capable of object recognition and object 401 

counting was not able to alter our problem solvers’ offloading preferences in the arithme-402 

tic task. Unexpectedly and not aligned with H1-2 however, the ascription of social ability 403 
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to the human was able to change offloading preferences. H1-2 is therefore only partially 404 

confirmed.  405 

(3) Hypotheses H2-1 and H2-2. In the Apps Cognitive Environment on the other hand, partic-406 

ipants changed their offloading preferences based on the Task Type only in the Task-407 

unspecific Agent and Task-specific App Expertise Beliefs Mental Model condition: Partic-408 

ipants showed a higher preference for Omnilearn for the Social in comparison to the 409 

Arithmetic Task Type for the Task-unspecific Agent and Task-specific App Expertise Be-410 

liefs (t(102) = 7.74, p < .0001; MSocial – MArithmetic = 12.1; in line with H2-2) but not for the 411 

Task-specific Agent and Task-unspecific App Expertise Beliefs (t(88) = .73, p = .47; MSocial 412 

– MArithmetic = .7; in line with H2-1) Mental Model condition. Mental Model in the Apps 413 

Cognitive Environment altered offloading preferences for both the Arithmetic (t(190) = 414 

5.97, p < .0001; MTask-specific Agent and Task-unspecific App Expertise Beliefs = -.1, MTask-unspecific Agent and 415 

Task-specific App Expertise Beliefs = -7.0; in line with H2-2) and the Social (t(190) = 4.60, p < .0001; 416 

MTask-specific Agent and Task-unspecific App Expertise Beliefs = .6, MTask-unspecific Agent and Task-specific App Expertise 417 

Beliefs = 5.1; in line with H2-2) Tasks. In sum, results for the Apps Cognitive Environment 418 

condition show that our participants had no prior task-related offloading preferences for 419 

the Omnilearn or the Pattern Analytics app, thus confirming H2-1. Results also show that 420 

updating a mental model with task-specific information is sufficient to establish strong of-421 

floading preferences, thus confirming H2-2. Results for the Apps Cognitive Environment 422 

condition are depicted in Figure 4b. Providing task-specific metacognitive information 423 

about a cognitive environment can thus outmatch the relevance of pre-existing mental 424 

models. In particular, participants in the Task-unspecific Agent and Task-specific App Ex-425 

pertise Beliefs Mental Model condition showed more extreme offloading preferences for 426 

apps than for agents in the Social (t(102) = 3.64, p = .0004; MApps-Agents= 3.38) and similar 427 



Mental Modals and Offloading Preferences 

 

21 

offloading preferences in the Arithmetic (t(102) = 1.50, p = .1366; MApps-Agents = 1.41) 428 

Task Type. 429 

 430 

Figure 4: Offloading Preferences. Offloading preferences, as measured in absolute frequencies, for the Agents (a) and the Apps 431 

(b) Cognitive Environment conditions. Note that the Task-unspecific Agent and Task-specific App Expertise Beliefs Mental Model 432 

condition comprises the left half of (a) and the right half of (b) while the Task-specific Agent and Task-unspecific App Expertise 433 

Beliefs Mental Model condition comprises the right half of (a) and the left half of (b). An individual’s preference scores can range 434 

from -18 to +18 for each permutation of Task Type and Cognitive Environment. Black diamonds represent means. Error bars 435 

represent 95% confidence intervals. Gray diamonds represent raw individual data points. Gray shape represents the distribution of 436 

the raw data as implemented by ggplot2’s geom_violin function (Wickham, 2016). *** p < .0001; n.s. p > .1 437 

 438 

Exploratory analyses 439 

In addition to the hypothesis-driven analyses, we explored whether the hypothesized effect of 440 

Cognitive Environment and Task Type on offloading preference is mediated by task-specific per-441 

ceived competence of the respectively available humans, robots, or smartphone apps. Mediation 442 

would suggest perceived competence to be a crucial property of a cognitive environment. It 443 

would furthermore suggest that the Mental Model manipulation induced consciously accessible 444 

competence beliefs that are a source of the offloading preference. Specifically, we ran two multi-445 
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level mediation models – one for each Mental Model level. For details on the Bayesian parameter 446 

estimation, consult Vuorre and Bolger  (2018). As we expected similar and substantial mediation 447 

for both Mental Model levels, running two models allowed for cross-validation of the parameters.  448 

Model results showed that for Task-specific Agent and Task-unspecific App Expertise Be-449 

liefs, none of the bootstrapped 95% confidence intervals of path a, b, c, or c’ included 0, which 450 

sets the stage for mediation tests. Mediation tests revealed that both the indirect effect (M = .28, 451 

95% CI = [.10 .48]) as well as the percentage mediated (M = .37, 95% CI = [.13 .62]) were signif-452 

icantly greater than zero. Analogously, for Task-unspecific Agent and Task-specific App Exper-453 

tise Beliefs, none of the bootstrapped 95% confidence intervals of path a, b, c, or c’ included 0. 454 

Both the indirect effect (M = .16, 95% CI = [.05 .28]) as well as the percentage mediated (M = 455 

.24, 95% CI = [.07 .42]) were significantly greater than zero. Results of both mediation models 456 

suggest partial mediation. Task-specific competence ratings therefore seem to be a relevant part 457 

of a human problem solver’s mental model of an agent or an app. All mediation model parameter 458 

estimates are depicted in Figure 5. More details regarding the statistical procedure as well as 459 

parameter estimates are provided in the Supplemental Material. Mean rating data is provided in 460 

Figure S1
6
. 461 

 462 

 463 

Figure 5: Mediation Models. Standardized Bayesian multilevel mediation model estimates for the Task-specific Agent and Task-464 

unspecific App Expertise Beliefs (a) and the Task-unspecific Agent and Task-specific App Expertise Beliefs (b) Mental Model 465 

conditions. Both models suggest partial mediation (see text). *: 95% CI does not include 0 466 
                                                 

6 Note that, for exploratory purposes, we obtained perceived competence ratings before and after participants engaged in the task. 

However, also note that, as indicated by the means, both ratings seem to be highly correlated.  
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DISCUSSION 467 

The current paper investigated the four hypotheses H1-1, H1-2, H2-1, and H2-2 (1-4) regarding 468 

the influence of mental models – specifically, beliefs about task-specific expertise – on cognitive 469 

offloading. Hypothesis testing was complemented by exploratory mediation analyses (5).  470 

(1) H1-1. We confirmed in the offloading domain what previous research has already shown 471 

in the advice seeking domain (Hertz & Wiese, 2019): Human problem solvers seem to 472 

have pronounced pre-existing beliefs regarding human and robotic agents that inform 473 

their decision whether to offload cognitive tasks to human or robotic agents (confirmation 474 

of  H1-1).  475 

(2) H1-2. When adding to these pre-existing beliefs by providing information about task-476 

specific competencies, we found that introducing a robot as proficient in arithmetic and a 477 

human as proficient in social tasks did not alter offloading preferences in the arithmetic 478 

task (partial confirmation of H1-2). We argue that offloading preferences did not change 479 

because our participants’ pre-existing generic beliefs have already been in congruence 480 

with the description of task-specific arithmetic expertise before the description was pre-481 

sented (compare to Figure S1ab, first graph from the left, for associated perceived com-482 

petence ratings). However, offloading preferences after providing task-specific infor-483 

mation did change for the social task (partial rejection of H1-2). The description’s impact 484 

on offloading preferences was likely due to the fact that – contradicting our expectations – 485 

pre-existing competence beliefs have not been in congruence with the task-specific social 486 

expertise suggested in the description (compare Figure S1ab, third graph from the left, 487 

for associated perceived competence ratings). Thus, our participants’ pre-existing mental 488 

models contained beliefs ascribing high arithmetic proficiency to the robot but surprising-489 

ly only suboptimal social proficiency to the human used in the present study. It should be 490 



Mental Modals and Offloading Preferences 

 

24 

noted that these results might not generalize to all human stimuli. For example, we only 491 

used a male human stimulus image and males are known to score lower on social skill 492 

measures than females (Petrides & Furnham, 2000), which makes it questionable whether 493 

initial social proficiency ratings would have been as low as in the present study if a fe-494 

male was used as the human agent instead
7
.  495 

(3) H2-1. We unsurprisingly found no task-specific offloading preferences for novel 496 

smartphone apps when introducing both apps in a task-unspecific manner (confirmation 497 

of H2-1). We argue that is because our participants’ mental models regarding the 498 

smartphone apps did not contain differential task-relevant beliefs. The finding thus sup-499 

ports the relevance of mental models for cognitive offloading and sets the stage for H2-2.  500 

(4) H2-2. We found that providing task-relevant information about the smartphone apps was 501 

sufficient to induce substantial offloading preferences (confirmation of H2-2). These pref-502 

erences were of comparable magnitude to the preferences for humans and robots. Thus, 503 

providing task-relevant information about novel cognitive tools like smartphone apps can 504 

be sufficient to induce offloading preferences that are as strong as prior beliefs humans 505 

have about embodied agents like humans and robots.  506 

(5) Exploratory analyses. Lastly, when conducting follow-up explorative analyses, we found 507 

that offloading preference was partially mediated by competence ratings, suggesting an at 508 

least partially information-based (Koriat & Levy-Sadot, 2000) decision process that fur-509 

ther highlights the importance of mental models for cognitive offloading. In other words, 510 

providing information about a cognitive helper’s task-specific expertise can update our 511 

                                                 

7
 We thank the anonymous reviewer who made us aware of this issue.  
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mental model of this helper. The updated model will subsequently provide consciously 512 

accessible competence beliefs that can inform offloading preferences.  513 

The present results provide evidence for how substantially mental models regarding fellow 514 

humans but also evolutionary novel cognitive partners like robots or smartphone apps can influ-515 

ence cognitive offloading preferences. We argue that refining mental models is an easy and cru-516 

cial approach to adjust offloading preferences and thus to improve our cognitive interactions with 517 

our social or tech-infused environments. To realize the potential benefit of such refinement, it is 518 

crucial to note that establishing valid and accurate mental models does not necessarily occur au-519 

tomatically. For example, it is known that the elderly frequently underrate their mnemonic abili-520 

ties which leads to an overreliance on external memory aids (Touron, 2015). Similarly, it has 521 

been shown that false beliefs about the reliability of a specific human-computer-interface can 522 

have prolonged maladaptive effects on offloading preferences (Weis & Wiese, 2019a).  523 

The present results suggest a general mechanism for learning how to cognitively interact with 524 

our environment that holds for embodied (e.g., human, robot) and non-embodied (e.g., 525 

smartphone apps) helpers with varying degrees of social features alike: establishing and refining 526 

mental models. This establishing-mental-models-mechanism is well compatible with a view that 527 

emphasizes human technical reasoning skills when engaging in cognitive interactions (Osiurak & 528 

Reynaud, 2019). Such technical reasoning (here: inferring a cognitive helper’s task expertise 529 

from an introductory text and pre-existing beliefs) is largely independent of social components of 530 

the interaction (social learning; e.g., Laland, 2004) or whether the cognitive interaction “partner” 531 

is assumed to possess a mind (top-down social cognition can heavily impact cognitive interac-532 

tions with the environment; Wiese et al., 2012). Thus, while social learning (e.g., copying others) 533 

and social cognition (e.g., gaze following) can provide feasible means for human problem solvers 534 
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to establish novel tool use behavior, asocial mechanisms based on technical reasoning seem to be 535 

equally feasible.  536 

 Several issues should be kept in mind when interpreting the present results. First, we want 537 

to emphasize that mental models can only partially explain how human problem solvers establish 538 

offloading preferences. For example, it has been shown that one’s beliefs about the own prospec-539 

tive memory ability and actual ability are distinct from each other and have separable effects on 540 

offloading preferences (Gilbert, 2015). Accordingly, the moderate relationship between perceived 541 

competence and offloading preferences found in this study does leave room for additional expla-542 

nations. In principle, the moderate relationship could also be due to methodological issues like a 543 

poor validity of our perceived competence measure. We however deem this possibility unlikely 544 

given the strong correlation with the “Task Type x Cognitive Environment” manipulation. Sec-545 

ond, it should be noted that the mediation analysis only captured one aspect of the mental models: 546 

beliefs about the cognitive helpers’ competence/expertise. It might well be that the metacognitive 547 

information we provided led to beliefs that are not directly related to competence and still affect-548 

ed offloading preferences. For example, we might have unwillingly established beliefs about how 549 

trustworthy or likable an entity is. In the case of trust, it has been shown that humans, robots, and 550 

non-embodied computers can receive similar pre-task trust ratings (de Visser et al., 2012). How-551 

ever, trust has been shown to be more stable for human than non-human cognitive helpers (de 552 

Visser et al., 2012), which might have in turn affected offloading preference over the course of 553 

the present study. Further complexity is added by the fact that individual differences regarding 554 

trust towards machines (e.g., Merritt & Ilgen, 2008) and towards own cognitive functioning (e.g., 555 

Touron, 2015) are likely to factor in as well. Note that task-specific trust towards own cognitive 556 

functioning can possibly be inferred from the perceived competence ratings shown in the Sup-557 

plemental Material (Figure S1) but that domain-general cognitive functioning has not been 558 
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measured in the present study and is known to influence offloading preference as well (Gilbert, 559 

2015). Third, in the present paradigm, participants were continuously confronted with two help-560 

ers, a situation that might deviate from everyday problem solving and obscure absolute offload-561 

ing rates.  Relatedly, the discrete depictions as well as the novelty of the human helper, the robot 562 

helper, and the smartphone applications, might have further influenced absolute offloading rates, 563 

which should be considered when interpreting absolute offloading rates. However, note that the 564 

present analyses were focused on relative offloading differences between helpers, a measure that 565 

should not substantially be influenced by helper availability or novelty. Fourth, agent and app 566 

description (as provided in Figure 1) lengths differed between Mental Model conditions. Alt-567 

hough description length was comparable within Cognitive Environment conditions and our main 568 

DV (i.e., relative offloading preference) is thus not impacted, comparisons of absolute offloading 569 

preference between Mental Model conditions as depicted in Figure 2 might be confounded. 570 

However, we are not aware of any theory that would suggest this potential confound to be sub-571 

stantial.  572 

One other highly interesting potential predictor of offloading preference that was not captured 573 

in the present study is experience-based (i.e., gut-feeling-based) rather than only information-574 

based (i.e., based on memory retrieval; compare Koriat & Levy-Sadot, 2000) processing
8
. Conse-575 

quently, our participants’ decisions to offload to a specific agent or app could have been due a gut 576 

feeling response that was developed when reading the agent and app descriptions rather than due 577 

to recalling the respective description (i.e., Figure 1). The unexplained variance in the present 578 

mediation results would provide enough room for such a possibility. In general, it is well estab-579 

                                                 

8
 The difference is nicely illustrated by Koriat and Levy-Sadot (2000) on p. 194: “A person who does not like tuna 

fish may feel some repulsion toward a salad offered in a buffet when she learns that it contains tuna fish. Her choice 

to avoid the salad may then be based on the explicit information gained (information-based action) or on the imme-

diate repulsive feeling (experience-based action)”. 
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lished that some characteristics that inform strategy selection processes might not be consciously 580 

accessible (Cary & Reder, 2002). Such unconscious processes are also in line with the finding 581 

that belief manipulations can influence offloading preferences without changing subjective rat-582 

ings of the cognitive environment’s usefulness (Weis & Wiese, 2019a). 583 

  584 



Mental Modals and Offloading Preferences 

 

29 

KEY POINTS 585 

 Naive human problem solvers possess mental models that encompass beliefs about task-586 

specific expertise of human and robot agents 587 

 These pre-existing mental models are reflected by how willing human problem solvers are 588 

to make use of such agents to help them solve specific cognitive tasks 589 

 Accordingly, when confronted with two similar and novel cognitive tools like smartphone 590 

apps, humans are indifferent about which one to use 591 

 However, providing a paragraph describing each app’s task-specific capabilities is enough 592 

to update the mental model and create as much behavioral relevance as the strong pre-593 

existing mental models that are in place for human and robotic agents do 594 

 We argue that creating or refining mental models (specifically, beliefs about expertise) is 595 

an easy and crucial approach to adjust offloading preferences and thus improve human 596 

problem solvers’ interactions in cognitive environments 597 

  598 
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SUPPLEMENTAL MATERIALS 700 

Perceived competence ratings: Mediation models 701 

In both mediation models, offloading preference was estimated using a multiple regres-702 

sion procedure with Task Type, Cognitive Environment, and participants as predictors. Scores for 703 

the predictor variable were computed with participants as a categorical variable in a regular mul-704 

tiple regression rather than as a random factor in a multilevel model because adding participants 705 

as a random factor would have turned the multilevel model singular. The difference between the 706 

task-specific perceived competence rating scores
9
 of the available cognitive environments (e.g., 707 

human - robot) was used as mediator. In other words, the mediator “competence rating differ-708 

ence” is defined as the task-specific difference in perceived competence between the available 709 

offloading options (i.e., between both agents for trials in the Agents Cognitive Environment and 710 

between both apps the Apps Cognitive Environment). For example, if a participant in the Agents 711 

Cognitive Environment rated the human’s competence in the arithmetic task as 80 and the robot’s 712 

competence as 95,  the competence rating difference score would be “-15”. Offloading preference 713 

was used as predicted variable. To estimate mediation parameters, R’s bmlm package (M. 714 

Vuorre, 2017) was used. Variables were centered and standardized within each subject. We thus 715 

report standardized weights.  716 

Results of the mediation model in the Task-specific Agent and Task-unspecific App Ex-717 

pertise Beliefs Mental Model condition are reported first (see also Figure 5a). In Step 1 of the 718 

                                                 

9
 Perceived competence was measured right before engaging in the task but after reading the metacognitive descrip-

tions. 
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mediation model, “Task Type x Cognitive Environment”
10

 was found to predict offloading pref-719 

erences (c pathway or total effect: M = .76, 95% CI = [.63 .89]). Step 2 showed that “Task Type x 720 

Cognitive Environment” predicted competence rating differences (a pathway: M = .82, 95% CI = 721 

[.71 .93]). Please recall that “competence rating difference” is defined as the task-specific differ-722 

ence in perceived proficiency between the available offloading options (i.e., between both agents 723 

for trials in the Agents Cognitive Environment and between both apps the Apps Cognitive Envi-724 

ronment). Step 3 of the mediation process showed that the mediator (competence rating differ-725 

ence), when controlling for “Task Type x Cognitive Environment”, predicted offloading prefer-726 

ence (b pathway: M = .26, 95% CI = [.05 .46]). Step 4 showed that “Task Type x Cognitive Envi-727 

ronment”, when controlling for the mediator (competence rating differences) still predicted of-728 

floading preferences (c’ pathway: M = .48, 95% CI = [.28 .68]). Note that step 3 and 4 are relying 729 

on the same regression equation. To test for the indirect effect, R’s bmlm package also computes 730 

Bayesian estimates and confidence intervals for the complete indirect pathway (i.e., a*b) as well 731 

as the percentage mediated (i.e., a*b / c). Both the indirect effect (M = .28, 95% CI = [.10 .48]) as 732 

well as the percentage mediated (M = .37, 95% CI = [.13 .62]) were significantly greater than 733 

zero. These results support partial mediation and therefore suggest that task-specific competence 734 

ratings are a relevant part of a human problem solver’s mental model of an agent or an app that 735 

                                                 

10
 Please note that the predictor “Task x Environment” was realized not by including the actual factor levels into the 

model but by using the offloading preferences as predicted by a multiple regression with the predictors Task, Envi-

ronment, Task x Environment, and Participant. Predicted scores were computed with participants as a categorical 

variable in a regular multiple regression rather than as a random factor in a multilevel model because adding partici-

pants a random factor would turn the multilevel model singular. The corresponding R code can be accessed via the 

OSF repository linked in this manuscript. 
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affords help with cognitive tasks. For details on the Bayesian parameter estimation, consult 736 

Vuorre and Bolger  (2018). Mean rating data is provided for the curious reader in Figure S1
11

.  737 

In this paragraph, results of the mediation model in the Task-unspecific Agent and Task-738 

specific App Expertise Beliefs Mental Model condition are reported; compare Figure 5b. The 739 

identical procedure as applied to the Task-specific Agent and Task-unspecific App Expertise Be-740 

liefs Mental Model data was used. In Step 1 of the mediation model, “Task Type x Cognitive 741 

Environment” was found to predict offloading preferences (c pathway or total effect: M = .66, 742 

95% CI = [.52 .79]). Step 2 showed that “Task Type x Cognitive Environment” predicted compe-743 

tence rating differences (a pathway: M = .76, 95% CI = [.64 .88]). Step 3 of the mediation pro-744 

cess showed that the mediator (competence rating differences), when controlling for “Task Type 745 

x Cognitive Environment”, still predicted offloading preferences (b pathway: M = .23, 95% CI = 746 

[.09 .38]). Step 4 showed that “Task Type x Cognitive Environment”, when controlling for the 747 

mediator (competence rating differences) still predicted offloading preferences (c’ pathway: M = 748 

.50, 95% CI = [.35 .65]). Both the indirect effect (M = .16, 95% CI = [.05 .28]) as well as the per-749 

centage mediated (M = .24, 95% CI = [.07 .42]) were significantly greater than zero. Just as in the 750 

Task-specific Agent and Task-unspecific App Expertise Beliefs Mental Model condition, these 751 

results support partial mediation. Specifically, these results cross-validate the findings of the first 752 

model in that task-specific competence ratings are likely a relevant part of a human problem 753 

solver’s mental model of an agent or app that affords help with cognitive tasks. 754 

  755 

                                                 

11
 Note that, for exploratory purposes, we obtained perceived competence ratings before and after participants en-

gaged in the task. However, also note that, as indicated by the means, both ratings seem to be highly correlated.  
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Perceived competence ratings: Descriptive statistics 756 

 757 

Figure S1: Perceived Competence Ratings. Ratings for the Task-specific Agent and Task-unspecific App Expertise Beliefs (a) and 758 

the Task-unspecific Agent and Task-specific App Expertise Beliefs (b) Mental Model conditions are depicted on the y-axis. Error 759 

bars represent +/- 1 SEM. Env.: Cognitive Environment, hmn: human agent (“Michael”), rbt: robot agent (“Meka), app1: Om-760 

nilearn app, app2: Pattern Analytics app, pre: before engaging in task, post: after engaging in task. 761 

  762 
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Task responses: Numeric values corresponding to Figure 3 763 

Table S1 764 

Response counts split by Mental Model, Task Type, and Cognitive Environment 765 

Mental 

Model 
Task Type Cognitive Environment Response [count] SD 
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Arithmetic 

Agents 

Own 6.3 6.7 

Human 0.8 1.5 

Robot 10.9 6.7 

Apps 

Own 7.4 7.0 

Pattern 

Analytics 
5.3 4.9 

Omnilearn 5.3 4.7 

Social 

Agents 

Own 9.8 6.0 

Human 7.8 5.9 

Robot 0.4 0.9 

Apps 

Own 12.8 6.3 

Pattern 

Analytics 
2.3 3.9 

Omnilearn 2.9 4.2 
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Arithmetic 

Agents 

Own 6.3 6.7 

Human 1.7 3.0 

Robot 10.0 6.7 

Apps 

Own 6.5 7.1 

Pattern 

Analytics 
9.3 7.1 

Omnilearn 2.3 3.9 

Social 

Agents 

Own 11.4 6.4 

Human 4.2 4.9 

Robot 2.5 4.6 

Apps 

Own 10.0 7.0 

Pattern 

Analytics 
1.4 3.2 

Omnilearn 6.5 6.7 
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